跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾正賢
研究生(外文):Jeng-ShianTzeng
論文名稱:氧化鋅奈米牆成長及其感測元件之應用
論文名稱(外文):Growth of ZnO Nanowalls and Application for Sensor Devices
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:97
中文關鍵詞:氧化鋅奈米牆水平爐管紫外光檢測器氣體感測器
外文關鍵詞:ZnOnanowallshorizontal furnace tubeUV photodetectorgas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米電子、光子晶體的研發擁有高度的吸引力,有可能成為下一世代元件架構,其中氧化鋅半導體具有寬直接能隙、低價、無毒、製程簡單之優勢,在光電元件的應用上被視為極有潛力的材料。
一般而言,成長氧化鋅奈米牆都需要先鍍上一層金屬觸媒或是晶種層。但在本論文中,作者藉由化學氣相沉積法直接在玻璃基板上成長氧化鋅奈米牆;開發一個新穎製程,以製程簡單、快速、便宜、較低溫的奈米牆製程方法應用在感測元件的研製,如光檢測器與氣體感測器等,並獲得不錯的元件特性。
論文首先敘述氧化鋅奈米牆成長的部分,作者係利用水平爐管來製備試片,研究在不同製程壓力、製程溫度、製程時間下所成長出之氧化鋅奈米牆。在製程溫度方面,分別為450℃、550℃、650℃,隨著溫度的提高會發現牆的形貌漸漸消失,到了650℃時,幾乎已成薄膜的形貌;接著以PL去分析,會發現隨著溫度的提高,綠光缺陷發光有很明顯的增大。由材料分析結果得知在450℃下成長半小時最為適合應用在紫外光檢測器上,其奈米牆厚度約為130nm,成長方向為(0002);另外在450℃下成長一小時最為適合應用在氣體感測器上,其奈米牆厚度約為290nm。接著,作者以金屬遮罩之方式在奈米牆上蒸鍍指插狀金(200nm)蕭特基電極做為紫外光檢測器;另外蒸鍍條狀鈀(200nm)催化電極做為氣體感測器。
元件製作完成後,作者量測元件的各項表現,在光響應方面,奈米牆光檢測器的紫外光對可見光響應拒斥比超過一個order。光反應的反應速度為2.8秒,明顯優於其他文獻的307秒,結果顯示此新穎製程方法無論在光響應或反應速度上表現皆優於其他奈米牆文獻的光檢測器。另一方面,在氣體選擇比,可以發現在低濃度下,甲烷比起氫氣和一氧化碳有很高的靈敏度,如果進一步把元件商品化,氧化鋅奈米牆較為適合做成甲烷氣體感測器。
綜合以上感測元件之特性,發現此新穎氧化鋅奈米牆製程技術有潛力成為下一世代製程技術。
Developing integrated nanoelectronic and nanophotonic devices attract highly attractive potential as next-generation device structure. ZnO-based semiconductors have been regarded as one of the strongest candidates for optoelectronic devices considering their direct wide band gap, low price, non-toxic, simple process, optical, and electronic properties.
In general, pre-coated metal catalyst or ZnO seed layer before the growth of ZnO nanowalls. However the thesis discusses the study of ZnO nanowalls direct growth on glass substrate without catalyst or seed layers by Chemical Vapor Deposition (CVD) method. Developing a novel process technology considering low-cost, fast, simple process, and low temperature, and further we apply the novel process for sensor devices, such as photodetectors and gas sensor.
First, we explain the growth of ZnO nanowalls, which was preparation by horizontal furnace tube. The use of a method for vertical coverage is to achieve a relative high vapor concentration during the growth. The study of growth of ZnO nanowalls were modulated with different pressure, process temperature, process time, respectively. We found that the morphology of nanowalls disappear gradually with temperature increased and further form nano films. By materials analysis, we got that ZnO nanowalls in 30 min and 450oC were complete and highest surface area to volume ratio for use in the UV photodetector. On the other hand, in 1 hour and 450oC, ZnO nanowalls were complete and highest surface area to volume ratio for use in the gas sensors.
Subsequently, the ZnO photodetector was fabricated using interdigital MSM structures by metal mask. Au (200 nm) and Pd (200nm) contact electrodes were deposited onto the samples for UV photodetector and gas sensor, respectively. After devices manufactured, the performances of the nanowalls sensor were reported. The UV to visible rejection ratio is 12 in photoresponse. Response time was 2.8 second, which was faster than 307 second, the value of other literature.
The results explained that the novel process technology of ZnO nanowalls not only in photoresponse but also in response time was better than other literature. On the other hand, we found that the sensor had a better sensing ability to the CH4 gas than CO and H2 with low concentration gas detection. Further applied device to commercialization, ZnO nanowalls was most suitable for CH4 gas sensor.
By sensing element characteristics, we found that the novel process technology of ZnO nanowalls drawed highly attractive potential as next-generation process architecture.
Abstract (Chinese) I
Abstract (English) III
Acknowledgement VI
Contents VIII
Table Captions XI
Figure Captions XII
Chapter 1. Introduction 1
1.1 Background 1
1.1.1 Properties of ZnO semiconductors 1
1.1.2 Advantage of ZnO Nanowalls 1
1.2 Motivation 3
1.3 Organization of thesis 3
1.4 Reference 9
Chapter 2. Experiment Equipment 11
2.1 Fabrication Systems 11
2.1.1 Thermal CVD System 11
2.1.2 Electron-beam (E-beam) evaporator 11
2.2 Measurement Equipment 12
2.2.1 Field Emission Scanning Electron Microscope 12
2.2.2 Transmission Electron Microscopy 14
2.2.3 X-ray Diffraction (XRD) System 14
2.2.4 Photoluminescence (PL) System 15
2.2.5 Raman scattering spectrometer 17
2.2.6 Current-Voltage (I-V) Measurement System 18
2.2.7 Gas Testing System 18
2.3 Reference 30
Chapter 3. Experimental Section 31
3.1 Growth of ZnO nanowalls 31
3.2 Structural Characterizations 31
3.2.1 Growth Pressure 31
3.2.2 Growth Temperature 32
3.2.3 Growth Time 33
3.2.4 Materials Analysis 34
3.3 Summary 36
3.4 Reference 47
Chapter 4. Metal-Semiconductor-Metal (MSM) Photodetector with ZnO Nanowalls 49
4.1 Background 49
4.2 Device Fabrication 49
4.3 Basic theory 50
4.3.1 Operation principle of MSM photodetector 50
4.3.2 Dark current of MSM photodetector 51
4.4 Current-Voltage Characteristics 53
4.5 Responsivity Characteristics 53
4.6 Time-response Characteristics 53
4.7 Reference 61
Chapter 5. Dangerous gas sensors with ZnO Nanowalls 64
5.1 Background 64
5.2 Device Fabrication 65
5.3 Basic theory 65
5.4 Working principle 68
5.4.1 Adsorption of oxygen 68
5.4.2 Oxygen Vacancy 70
5.5 Gas Sensing Properties 71
5.5.1 ZnO nanowalls with carbon monoxide gas sensing element 71
5.5.2 ZnO nanowalls with hydrogen gas sensing element 73
5.5.3 ZnO nanowalls with methane gas sensing element 74
5.5.4 The transient response with methane gas sensing 76
5.5.5 Selective gas detection 76
5.6 References 88
Chapter 6. Conclusions and Future works 93
6.1 Conclusions 93
6.2 Future Works 94
6.3 References 96
Chapter1
[1] Jagadish C.; Pearton S., Eds. Zinc oxide bulk, thin films and nanostructures: Processing, properties and applications; Elsevier: Amsterdam,The Netherlands, 2006.
[2] Ellmer K.; Klein A.; Rech B., Eds. Transparent conductiVe zinc oxide; Springer: Berlin, Germany, 2008.
[3] Klingshirn, C. Phys. Status Solidi B 2007, 244, 3027.
[4] Guo, R. Q.; Nishimura, J.; Matsumoto,M.;Higashihata,M.;Nakamura, D.; Suehiro, J.; Okada, T. Appl. Phys. B: Lasers Opt. 2008, 90,539.
[5] Okada, T.; Suehiro, J. Appl. Surf. Sci. 2007, 253, 7840.
[6] Li, C.; Hou, K.; Yang, X. X.; Qu, K.; Lei, W.; Zhang, X. B.; Wang, B. P.; Sun, X. W. Appl. Phys. Lett. 2008, 93, 233508.
[7] Schmidt-Mende, L.; Macmanus-Driscoll, J. L. Mater. Today 2007, 10, 40.
[8] Wu, Y. H.; Qiao, P. W.; Chong, T. C.; Shen, Z. X. AdV. Mater.2002, 14, 64.
[9] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[10] HT Ng, J. Li, MK Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of Epitaxial Nanowires at the Junctions of Nanowalls,Science,vol. 300, 2003, p. 1249.
[11] Z. Yin, N. Chen, R. Dai, L. Liu, X. Zhang, X. Wang, J. Wu, C. Chai, On the formation of well-aligned ZnO nanowall networks by catalyst-free thermal evaporation method, J. Cryst. Growth 305 (2007) 296-301
[12] Young Joon Hong, Hye Seong Jung, Jinkyoung Yoo, Yong-Jin Kim, Chul-Ho Lee, Miyoung Kim, and Gyu-Chul Yi, Shape-Controlled Nanoarchitectures Using Nanowalls, Adv. Mater. 2009, 21, 222–226
[13] Hong, Y. J.; Jung, H. S.; Yoo, J.; Kim, Y. J.; Lee, C. H.; Kim, M. Y.; Yi, G. C. AdV. Mater. 2009, 21, 222.
[14] Kim, S. W.; Fujita, S.; Yi, M. S.; Yoon, D. H. Appl. Phys. Lett. 2006, 88, 253114.
[15] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, “ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors, J. Phys. Chem. C 2009, 113, 10975–10980.
[16] Kim, S. W.; Park, H. K.; Yi, M. S.; Park, N. M.; Park, J. H.; Kim, S. H.; Maeng, S. L.; Choi, C. J.; Moon, S. E. Appl. Phys. Lett. 2007, 90, 033107.
[17] Maeng, J. S.; Jo, M. S.; Kang, S. K.; Kwon, M. K.; Jo, G. H.; Kim, T. W.; Seo, J.; Huang, H.; Kim, D. Y.; Park, S. J.; Lee, T. Appl. Phys. Lett. 2008, 93, 123109.
[18] Jongsun Maeng, Minseok Jo, Seok-Ju Kang, Min-Ki Kwon, Gunho Jo, Tae-Wook Kim, Jaeduck Seo, Hyunsang Hwang, Dong-Yu Kim, Seong-Ju Park, Takhee Lee, Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene):poly (styrene-sulfonate) and ZnO nanowall, Appl. Phys. Lett. 93, 123109 (2008)

Chapter2
[1] Ruterana P, Albrecht M and Neugebauer J 2003 Nitride Semiconductors : handbook on materials and devices, Wiley-VCH.
[2] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643.
[3] Cheong M G, Kim K S, Oh C S, Namgung N W, Yang G M, Hong C H, Lim K Y, Lim D H and Yoshikawa A 2000 Appl. Phys. Lett. 77 2557.
[4] Fu Y, Moon Y T, Yun F, Ozgur U, Xie J Q, Dogan S, Morkoc H, Inoki C K, Kuan T S, Zhou L and Smith D J 2005 Appl. Phys. Lett. 86 043108.
[5] Schroder Dieter K 1990 John Wiley & Sons Inc 490.

Chapter3
[1] H. Yagi, K. Muranushi, N. Nunoya, T. Sano, S. Tamura, S. Arai, Appl. Phys. Lett. 2002, 81, 966.
[2] Y. J. Hong, S. J. An, H. S. Jung, C.-H. Lee, G.-C. Yi, Adv. Mater. 2007, 19, 4416.
[3] Kashif, M.; Akhtar, M. N.; Nasir, N.; Yahya, N. Versatility of ZnO Nanostructures. Adv. Struct. Mater. 2010, 219–244.
[4] Chung, K.; Lee, C.-H.; Yi, G.-C. Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices. Science 2010, 330, 655–657.
[5] Fan, H. J.; Zacharias, M. Manipulation of Crawling Growth for the Formation of Sub-millimeter Long ZnO Nanowalls. J. Mater. Sci. Technol. 2008, 24, 589–593.
[6] Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth Faceting in Silicon Nanowires. Phys. Rev. Lett. 2005, 95, 146104(1)-146104(4).
[7] Yang, G. W.; Liu, B. X. Phys. ReV. B 2000, 61, 4500.
[8] Rahm, A.; Yang, G. W.; Lorenz, M.; Nobis, T.; Lenzner, J.; Wagner, G.; Grundmann, M.; Thin Solid Films 2005, 486, 191.
[9] Lijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58.
[10] Guo, R. Q.; Nishimura, J.; Ueda, M.; Higashihata, M.; Nakamura, D.; Okada, T. Appl. Phys. A: Mater. Sci. Process. 2007, 89, 141.
[11] Guo, R. Q.; Nishimura, J.; Ueda, M.; Higashihata, M.; Nakamura, D.; Okada, T. Appl. Phys. A: Mater. Sci. Process. 2007, 89, 141.
[12] Wu, Y. H.; Yang, B. J.; Zong, B. Y.; Sun, H.; Shen, Z. X.; Feng, Y. P. J. Mater. Chem. 2004, 14, 469.
[13] Yang, G. W.; Liu, B. X. Phys. ReV. B 2000, 61, 4500.
[14] Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Zapien, J. A.; Leung, Y. H.; Luo, L. B.; Wang, P. F.; Lee, C. S.; Lee, S. T. p-Type ZnO Nanowire Arrays. Nano Lett. 2008, 8, 2591–2597.
[15] Cao, B. Q.; Cai, W. P.; Zeng, H. B. Appl. Phys. Lett. 2006, 88, 161101.
[16] Cao, B. Q.; Cai, W. P.; Zeng, H. B.; Duan, G. T. J. Appl. Phys. 2006, 99, 073516.
[17] Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13, 113–116.
[18] Wang, X. D.; Song, J. H.; Wang, Z. L. Nanowire and Nanobelt Arrays of Zinc Oxide from Synthesis to Properties and to Novel Devices. J. Mater. Chem. 2007, 17, 711–720.
[19] H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 300 (2003) 1249.
[20] H.W. Liang, Y.M. Lu, D.Z. Shen, Y.C. Liu, J.F. Yan, C.X. Shan, B.H. Li, Z.Z. Zhang, J.Y. Zhang, X.W. Fan, Phys. Stat. Sol. A 202 (2005) 1060.

Chapter4
[1] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors, J. Appl. Phys. vol. 79, no. 10, 7433–7473, 1996.
[2] S. M. Sze, “Physics of Semiconductor Devices, 2nd ed., Wiley: New York, 1981.
[3] D. Walker, M. Razeghi, “The development of nitride-based UV photodetector, Opto-electronics review, vol. 8, pp. 25–42, 2000.
[4] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain, Nano Letters, vol. 7, no. 4, pp. 1003-1009, 2007.
[5] Ito S et al 2000 Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design Int. Electron Device Meeting Tech. Dig. pp 247–50
[6] S.S. Hullavarad, S. Dhar, B. Varughese, I. Takeuchi, T. Venkatesan, R.D. Vispute, J. Vac. Sci. Technol. A 23 (2005) 982.
[7] Maeng, J. S.; Jo, M. S.; Kang, S. K.; Kwon, M. K.; Jo, G. H.; Kim, T. W.; Seo, J.; Huang, H.; Kim, D. Y.; Park, S. J.; Lee, T. Appl. Phys. Lett. 2008, 93, 123109.
[8] M. H. Huang, S.Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897.
[9] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545.
[10] Qifeng Zhang, Christopher S. Dandeneau, Xiaoyuan Zhou, and Guozhong Cao, “ZnO Nanostructures for Dye-Sensitized Solar Cells, Adv. Mater. 2009, 21, 4087–4108.
[11] Wang K, Chen F, Belev G, Kasap S and Karim K S 2009 Appl. Phys. Lett. 95 013505.
[12] Ji L W, Peng S M, Su Y K, Young S J, Wu C Z and Cheng W B 2009 Appl. Phys. Lett. 94 203106.
[13] Ji, L.W. ; Chang, S.J. ; Chen, Y.P. ; Lam, K.T. ; Liang, S.H.; Du, X.L. ; Xue, Q.K. ; Sun, Y.S. , “ZnO metal-semiconductor-metal ultraviolet photodetectors with Iridium contact electrodes ,IEEE June 2007, Volume: 1 , Issue: 3 , Page(s): 135 - 139 .
[14] P.Q. Mantas, J.L. Baptista, “The barrier height formation in ZnO varistors , J EUR CERAM SOC, Volume 15, Issue 7, 1995, Pages 605 -615.
[15] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, “ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors , J. Phys. Chem. C 2009, 113, 10975–10980.
[16] Chien-Yuan Lu, Shoou-Jinn Chang, Sheng-Po Chang, Ching-Ting Lee, Che-Fu Kuo, and Hong-Ming Chang, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates , APPLIED PHYSICS LETTERS 89, 153101 2006.
[17] Chun Li, Guojia Fang, Fuhai Su, Guohua Li, XiaoguangWu and Xingzhong Zhao, “Synthesis and photoluminescence properties of vertically aligned ZnO nanorod–nanowall junction arrays on a ZnO-coated silicon substrate, Nanotechnology 17 (2006) 3740–3744.
[18] Jun Zhou, Yudong Gu, Youfan Hu, Wenjie Mai, Ping-Hung Yeh, Gang Bao, Ashok K. Sood, Dennis L. Polla, and Zhong Lin Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett. 94, 191103 (2009).

Chapter5
[1] S. R. Morrison, “Semiconductor Gas Sensors, Sens. Actuators, vol. 2, pp. 329-341,1982.
[2] W.J. Buttner, G.J. Maclay, and J.R. Stetter, “Microfabricated amperometric gas sensors, Electron Devices, IEEE Transactions on , Vol. 35,pp. 793 –799, 1988.
[3] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection, J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[4] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor, IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
[5] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2,pp. 431 –440L, 1997.
[6] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,Fast chemical sensing with metal-insulator silicon carbide structures, IEEE Electron Device Letters, Vol, 18, pp. 287 –289, 1997.
[7] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating, Sensor and Actuators B, Vol. 85, pp. 10-18,2002.
[8] M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcbtechnology, Sensors, 2002 Proceedings of IEEE , Vol.18, pp. 779 –784 2002.
[9] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection, Components, Package, and Manufacturing, IEEE Transactions on , Vol.35,pp. 793 –799, 1995.
[10] C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques, IEEE Trans. Ultrasonics,Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997.
[11] P. T. Moseley, “Solid state gas sensors, Meas. Sci. Technol., vol. 8, pp. 223-237,1997.
[12] W. Göpel and K. D. Schierbaum, “SnO2 sensors: current status and future prospects, Sens. Actuator B-Chem., vol. 26-27, no. 1-3, pp. 1-12, May 1995.
[13] T. Anukunprasert, C. Saiwan and E. Traversa, “The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2, Sci. Technol. Adv. Mater., vol. 6, no. 3-4, pp. 359-363, Apr.-May 2005.
[14] C. Y. Liu, C. F. Chen and J. P. Leu, “Fabrication and CO sensing properties of mesostructured ZnO gas sensors, J. Electrochem. Soc., vol. 156, no. 1, pp. J16-J19, 2009.
[15] Pai-Chun Chang, Zhiyong Fan, and Chung-Jen Chien, “High-performance ZnO nanowire field effect transistors, APPLIED PHYSICS LETTERS 89, 133113 2006.
[16] Kewei Liu, Makoto Sakurai, Meiyong Liao, and Masakazu Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles, J. Phys. Chem. C, 2010, 114 (46), pp 19835–19839.
[17] V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide, J. Appl. Phys., vol. 83, no. 10, pp. 5447-5451, May 1998.
[18] Y. C. Hong, C. U. Bang, D. H. Shin and H. S. Uhm, “Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma, Chem. Phys. Lett., vol. 413, no. 4-6, pp. 454-457, Sept. 2005.
[19] M. N. Islam and M. O. Hakim, “Electron affinity and work function of polycrystalline SnO2 thin film, J. Mater. Sci. Lett., vol. 5, no. 1, pp. 63-65, Jan. 1986.
[20] S.W. Hla, P. Lacovig, G. Comelli, A. Baraldi,M.Kiskinova, and R. Rosei, “Orientational anisotropy in oxygen dissociation on Rh (110), Physical Review B, vol. 60, no. 11, pp. 7800–7803, 1999.
[21] A. Rothschild and Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, Journal of Applied Physics, vol. 95, no. 11, pp. 6374–6380, 2004.
[22] S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, “Methane adsorption and dissociation and oxygen adsorption and reaction with CO on Pd nanoparticles on MgO(1 0 0) and on Pd(1 1 1), Surface Science, vol. 591, no. 1–3, pp. 90–107, 2005.
[23] Windischmann H, Mark P ,“A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor Journal Of The Electrochemical Society , ,vol 126, 1979 , pp.627-633
[24] S. R. Morrison, “The Chemical Physics of Surfaces, 2nd , New York
,Plenum Press, pp.251, 1990.
[25]N.Yamazoe, J.Fuchigami, M.Kishikawa and T.Seiyama, “Interactions of tin oxide surface with O2, H2O and H2 Surface Science, vol 86, 1979 , pp.335-344
[26] K. M. Sancier, “ESR evidence of CO oxidation by more than one oxygen species sorbed on ZnO , Journal of Catalysis, vol 9, 1967 , pp.331-335
[27]S.C.Chang, “Thin-film semiconductor NOx sensor , IEEE Transactions on Electron Devices ,vol 26, 1979 , pp.1875-1880
[28] M.-S. Liao, C.-T. Au, and C.-F. Ng, “Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study, Chemical Physics Letters, vol. 272, no. 5-6, pp. 445–452, 1997.
[29] V. R. Shinde, T. P. Gujar, and C. D. Lokhande, “Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization, Sensors and Actuators B, vol. 123, no. 2, pp. 701–706, 2007.
[30] M. Lofdahl, C. Utaiwasin, A. Carlsson, I. Lundstrom, and M. Eriksson, “Gas response dependence on gate metal morphology of field-effect devices, Sensors and Actuators B, vol. 80, no.3, pp. 183–192, 2001.
[31] G. Neri, A. Bonavita, S. Galvagno, C. Pace and N. Donato, “Preparation, characterization and CO sensing of Au/iron oxide thin films, J. Mater. Sci.-Mater. Electron., vol. 13, no. 9, pp. 561-565, Sept. 2002.
[32] Windischmann H, Mark P ,“A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor Journal Of The Electrochemical Society , ,vol 126, 1979 , pp.627-633
[33] Dong Chan Kim, Ju Ho Lee, Sanjay Kumar Mohanta, Hyung Koun Cho, and Jeong Yong Lee,“Structural transition from MgZnO nanowires to ultrathin nanowalls by surface separation: growth evolution and gas sensing properties Nanotechnology 21 (2010) 425503 (8pp)
[34] Z. Jiao, G. Ye, F. Chen, M. Li, and J. Liu, .The preparation of ZnGa2O4 nanocrystals by spray coprecipitation and its gas sensing characteristics., Sensors 2, 71-78 (2002).
[35] Basu S, Basu PK. Nanocrystalline metal oxides for Methane sensors: role of Nobel Metals. J Sens 2009;861968:1–20.
[36] Basu PK, Saha N, Jana SK, Saha H, Lloyd Spetz A, Basu S. Schottky junction methane sensors using electrochemically grown nanocrystalline-nonporous ZnO thin films. J Sens 2009;790476:1–9.
[37] Wollenstein J, Burgmair M, Plescher G, Sulima T, Hildenbrand J, Bottner H. Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens Actuators B 2003;93:442–8.
[38] Mishra GP, Sengupta A, Maji S, Sarkar SK, Bhattacharyya P. The effect of catalytic metal contact on methane sensing performance of nanoporous ZnO–Si heterojunction. Int J Smart Sensing Intell Syst 2010;3:292–303.
[39] V. I. Filippov, A. A. Vasiliev, W. Moritz and J. Szeponik, “Room-temperature hydrogen sensitivity of a MIS-structure based on the Pt/LaF3 interface, IEEE Sens. J., vol. 6, no. 5, pp. 1250-1255, Oct. 2006.
[40] S. Marco, A. Ortega, A. Pardo and J. Samitier, “Gas identification with tin oxide sensor array and self-organizing maps: Adaptive correction of sensor drifts, IEEE Trans. Instrum. Meas., vol. 47, no. 1, pp. 316-321, Feb. 1998.
[41] V.R. Shinde, T.P. Gujar, C.D. Lokhande, Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitisation, Sens. Actuators B 123 (2007) 701–706.

Chapter6
[1] Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z. J. Phys. Chem. C 2009, 113, 12546.
[2] Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Perez, J. Z.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Mofor, A. C.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; Dang, D. L. Nanotechnology 2009, 20.
[3] Chen, H. C.; Chen, M. J.; Wu, M. K.; Li, W. C.; Tsai, H. L.; Yang, J. R.; Kuan, H.; Shiojiri, M. IEEE J. Quantum Electron. 2010, 46, 265.
[4] Chen, P. H.; Lai, W. C.; Peng, L. C.; Kuo, C. H.; Yeh, C. L.; Sheu, J. K.; Tun, C. J. IEEE Trans. Electron DeVices 2010, 57, 134.
[5] Wu J J and Liu S C 2002 Adv. Mater. 14 215.
[6] Park W I, Jun Y H, Jung S W and Yi G C 2003 Appl. Phys. Lett. 82 964
[7] Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M and Shimizu A 1997 Jpn. J. Appl. Phys. 36 1453.
[8] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B and Cantwell G 2002 Appl. Phys. Lett. 81 1830.
[9] Kim K K, Kim H S, Kwang D K, Lim J H and Park S J 2003 Appl. Phys. Lett. 83 63.
[10] Ryu Y R, Lee T S and White H W 2003 Appl. Phys. Lett. 83 87.
[11] Bang H H, Hwang D K, Park M C, Ko Y D, Yun I and Myoung J M 2003 Appl. Surf. Sci. 210 177.
[12] Bian J M, Li X M, Gao X D, Yu W D and Chen L D 2004 Appl. Phys. Lett. 84 541.
[13] Guo L J, Zhen Y Z, Lei W, Hui Z B and Yun H J 2004 Chin. Phys. Lett. 19 1494.
[14] Hoffman R L, Norris B J and Wager J F 2003 Appl. Phys. Lett. 82 733.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊