跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏瑋辰
研究生(外文):Wei-ChenYen
論文名稱:新型3D奈米柱狀結構-鈀鉑合金/高介電質薄膜/N型-矽基板MIS蕭特基二極體之氫氣感測器研製
論文名稱(外文):A Novel Pd/Pt/High-K dielectric/n-Silicon MIS Schottky Diode with 3D Nano Rod Structure for Hydrogen Sensing Applications
指導教授:方炎坤方炎坤引用關係
指導教授(外文):Yen-Kun Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:氫氣感測器蕭特基二極體高介電質薄膜奈米柱
外文關鍵詞:Hydrogen SensingNano RodsHigh-K thin filmMIS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討整體(3D)奈米柱狀結構之MIS二極體式氫氣感測器的研製。吾人研究利用硝酸銀及氫氟酸之蝕刻溶液於N型(100)矽基板上成長奈米柱狀結構。然後於此結構上使用熱鎢絲化學氣相沉積法(HWCVD)以及射頻濺鍍系統(Sputtering system)成長不同的High-K薄膜(Diamond、HfO2、TiO2)作為本質層。再用熱蒸鍍系統(Thermal evaporation)蒸鍍上不同的金屬(Pd、Pt、Pd/Pt)作為氫氣離子化的催化層。最後再蒸鍍鋁金屬當指叉式電極完成Al/PdPt/High-K/n-Si/Al MIS氫氣感測元件。
本研究分為四個部分: (1)不同材料催化金屬層(Pd、Pt、Pd/Pt)之比較,(2)不同本質絕緣層材料(Diamond、HfO2、TiO2)之比較,(3) 2D平面薄膜式與3D奈米柱狀結構之比較, (4)不同Diamond絕緣層薄膜厚度的比較。並利用Raman、XRD量測Diamond絕緣層原子間的鍵結與薄膜結晶; SEM與AFM觀察表面結構與粗糙度;元件I-V的量測則利用HP4145半導體量測分析儀來進行。
實驗結果顯示,催化金屬層為Pd/Pt時,有最佳感測能力並有效地改善金屬在高溫下與氫氣產生氫胞(hydrogen blister)現象。又奈米柱狀結構可以增加氣體接觸之面積和體積比,故靈敏度由平面薄膜式的1350%提升至2860%;另外,三種不同High-K本質絕緣層中以Diamond對氫氣感測能力最佳。不論在低或高溫度及不同濃度條件下皆有較佳之感測能力。如在溫度200℃、逆偏壓3V及濃度100ppm下,其靈敏度為217%,相較於HfO2及TiO2的122%和121%分別提高1.78 倍及1.79 倍。且以Diamond為本質絕緣層的3D 結構者,在溫度200℃、濃度100ppm的環境下也擁有最快速的反應時間(9秒)、最佳的再現性以及對甲烷及二氧化碳之氣體選擇比。
本論文之3D奈米柱狀結構MIS氫氣感測器在溫度150℃、濃度100ppm下,其靈敏度為202%、反應時間為9sec。相較於已發表文獻Pt/HfON/SiC之平面MIS Schottky diode在溫度150℃、濃度100ppm下,靈敏度53%、反應時間10.5s為佳。

We developed the 3D nano rod structure Al/PdPt/ high-K/n-Si/Al MIS Schottky diode for H2 gas sensing applications. Firstly, the Si nano rods were formed on the n type (100) Si substrates with AgNO3and HF mixed etching solution. Then deposited the intrinsic high-K thin films (diamond、HfO2、TiO2) with HWCVD(Hot-Wire CVD) and sputtering system. Followed by deposition of various metal such as Pd、Pt and Pd/Pt as catalytic layer. In final, the device was completed by evaporation of Al on the top and bottom, respectively as electrode contact.
We optimized the 3D hydrogen sensor with the following studies: (a) using different catalytic material Pd、Pt and Pd/Pt, (b) to deposit diamond、HfO2 and TiO2 as intrinsic dielectric layer, (c) comparison of the 3D nano rod structure with the conventional 2D thin film type, and (d) to vary intrinsic dielectric layer thickness. Besides, to get the best quality of diamond as the intrinsic layer, we used Raman, XRD, SEM and AFM, respectively for bond structure measurement, crystallinity analyzing, surface roughness, and morphology inspection.
Experimental results show that composite of Pd/Pt has the highest activity to catalytic hydrogen atoms into ions, and suppress the hydrogen blister issue. Besides, the nano rods structure indeed can promote sensitivity from 1350% of the conventional 2D thin film type to 2860%. Furthermore, use of diamond as i-layer achieves the fast response time of 9sec, and the highest sensitivity of 217% respectively for 100ppm H2 ambient with the condition of - 3V, 200oC. In addition, we found the developed 3D MIS diode H2 sensor has no significant sensing action to CO2 and alcohol gases
Under 150 oC /100ppm H2 ambient, the developed 3D H2 sensor has the best performances of 202% and 9 sec, respectively for sensitivity of and response time , which are better than the reported Pt/HfON/SiC MIS Schottky diode of 53% and 10.5 sec under same conditions.

目錄
摘要 I
Abstract III
第一章 導論 1
1-1前言 1
1-2氣體感測器 2
1-3氫氣特性 2
1-4非晶鑽石薄膜應用 3
1-5無電鍍蝕刻的3D奈米柱結構 3
1-6論文架構 4
第二章 理論基礎 5
2-1元件基礎理論 5
2-2氫氣感測機制 8
2-3蝕刻奈米柱狀結構之機制及原理 8
第三章 製程及量測相關儀器 11
3-1 HWCVD特性 11
3-2影響非晶鑽石薄膜的參數 13
3-3氣體感測器相關製程技術 18
3-3-1 真空蒸著系統(Thermal Vacuum Evaporation System) 18
3-3-2 射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 19
3-4量測儀器 21
3-4-1場放射型掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope , FE-SEM) 21
3-4-2膜厚量測儀 (α-Step) 21
3-4-3 X光繞射儀(X-ray Diffractometer, XRD) 22
3-4-4 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy , FTIR) 23
3-4-5 拉曼光譜儀(Raman Spectroscopy) 24
3-4-6 氣體感測量測系統 25
3-4-7 HP4145B半導體參數分析儀 25
第四章 結果與討論 26
4-1奈米鑽石薄膜分析 26
4-1-1 甲烷CH4流量對薄膜特性之影響 27
4-1-2 H2對薄膜特性之影響 28
4-1-3 基板偏壓對薄膜特性之影響 29
4-2蝕刻奈米柱狀結構 30
4-2-1蝕刻奈米柱狀結構之製程步驟 30
4-2-2蝕刻奈米柱狀結構分析 31
4-3奈米結構元件製作與特性量測 32
4-3-1元件結構及製程步驟 32
4-3-2催化層薄膜材料之氫氣感測器分析 33
4-3-3本質層薄膜厚度對氫氣感測器之影響 35
4-4奈米柱狀結構氫氣感測器分析 38
4-4-1奈米柱狀結構氫氣感測器分析 38
4-4-2感測溫度對奈米柱狀結構氫氣感測器之分析 40
4-5不同本質層材料對氫氣感測器之影響 42
4-5-1鑽石作本質層對奈米柱狀結構氫氣感測器之分析 43
4-5-2二氧化鉿作本質層對奈米柱狀結構氫氣感測器之分析 44
4-5-3二氧化鈦作本質層對奈米柱狀結構氫氣感測器之分析 44
4-5-4綜合討論以及I-T分析 45
4-6針對鑽石為本質層的感測器作選擇比 46
第五章 結論與未來展望 47
5-1結論 47
5-2未來展望 48
※參考文獻 49


[1]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場,材料與社會,第150期1999.

[2]Muret P , Volpe P “Schottky Diode Architectures On P-Type Diamond For Fast Switching, High Forward Current Density And High Breakdown Field Rectifiers, Diamond And Related Materials, vol.20,2011,pp.285-289.

[3]Alfieri D , Almaviva S , De Sio A Single-Crystal Diamond MIS Diode For Deep UV Detection “, Radiation Effects And Defects In Solids,vol.165,2010,pp.737-745.

[4]Edholm B , Soderbarg A; Bengtsson S “Reliability Evaluation Of Manufacturing Processes For Bipolar And MOS Devices On Silicon-On-Diamond Materials, Journal Of The Electrochemical Society,vol.143,1996,pp. 1326-1334.

[5]T. Maki , G.L. Hou , T.H. Kim , S. Shikama “ Fabrication and Characterization of diamond Schottky Diode Using Polyerystalline Films , 2nd Int. Conf. On Application Of Diamond Flinty And Related Materials, 1993.

[6]An.T , Zhao , FQ Pei.Q “Preparation, Characterization and Combustion Catalytic Activity of Nanopartical Super Thermites , Chinese Journal Of Inorganic Chemistry ,vol.27,2011,pp.231-238.

[7]Rahman.A , Kosulnikov.S “Subwavelength Optical Imaging With An Array Of Silver Nanorods , Journal Of Nanophotonics,vol.5,2011,pp.051601.

[8]Ghahremaninezhad.A , Asselin.E “Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires , Journal Of Physical Chemistry C,vol.115,2011,pp.9320-9334.


[9]Slobodian.P , Riha.P , Lengalova.A “Effect Of Compressive Strain On Electric Resistance Of Multi-Wall Carbon Nanotube Networks , Journal Of Experimental Nanoscience ,vol.6,2011,pp.294-304.

[10]Mi. BZ , Wang. HY , Zhou.YS “Theoretical Investigations Of Magnetic Properties Of Ferromagnetic Single-Layered Nanobelts , Physica Status Solidi B-Basic Solid State Physics ,vol.248,2011,pp.1280-1286.

[11]R .S .Wagner , W.C Ellis , Appl.Phys.Lett. vol.4,1964,pp.89.

[12]R. S .Wagner ,W.CEllis ,Trans .Met .Soc. ,vol.233,1965,pp.1053.

[13]R. S .Wagner , “Whisker Technology , Ed. A. P. Levitt , Wiley New York,1970,pp.47-119.

[14]S.Zhongliang , W.Shanqiang , S. Jerzy , “An Observation Of Palladium Membrane Formation On A Porous Stainless Steel Substrate By Electroless Deposition , Journal of Membrane Science , vol.280,2006,pp.705-711.]

[15]Y.S. Cheng , K.L. Yeung, “Effects Of Electroless Plating Chemistry On The Synthesis Of Palladium Membranes , Journal of Membrane Science, vol.182,2001,pp.195-203.

[16]R. Chepuri , K. Rao, C. Trivedi , “Chemical And Electrochemical Depositions Of Platinum Group Metals And Their Applications , Coordination Chemistry Reviews, vol.249,2005,pp.613-631.

[17]V.L . Rideout , “Review Of Theory, Technology And Applications Of Metal-Semiconductor Rectifiers , Thin Solid Films,vol.48,1978,pp.261-291.

[18]S.M. Sze, “Physics Of Semiconductor Devices,Wiley,1980.

[19]Neamen, “Semiconductor physics and device ,1992,pp336.



[20]Jun-Rui Huang, Wei-Chou Hsu,∗, Huey-Ing Chen, Wen-Chau Liu“Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres Sensors Actuators B vol.123 (2007) 1040–1048

[21]T. Osaka, M. Watanabe , “ NagaiFabrication Of Patterned Nanostructures With Various Metal Species , J. Electrochem , vol.141,1994,pp.2834.

[22]J.S. Kim, H. Morita, D. Joo , “Formation of Electrochemically Active Silicon Surface and its Application to Various Functional Devices , J. Electrochem , vol.144,1997,pp.3275.

[23]K. Q. Peng and J. Zhu , “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution, Electrochem. Acta 49 ,2004,pp.2563-2568.

[24]Neamen, “Semiconductor physics and device ch9,1992,p336.

[25]S. R. Morrision, “The Chemical Physics of Surface,2nd , New York: Plnum Press,1990,pp251.

[26]P.Gonon, A.Deneuville, F.Fontaine, E.Gheeraert, J.Appl.Phys. 78 (1995) 6633-6638.

[27]Zha.C , S.Krasnicki , “Composite Chemical Vapor Deposition Diamond Anvils For High-Pressure/High-Temperature Experiments , High Pressure Research , vol.29,2009,pp.317-324.

[28]M.Lee , S.F. Bent , “Temperature Effects In The Hot Wire Chemical Vapor Deposition Of Amorphous Hydrogenated Silicon Carbon Alloy , Journal Of Applied Physics,vol.87,2000,pp.4600-4610.

[29]Y.Komura , A.Tabata , “Influence Of Gas Pressure On Low-Temperature Preparation And Film Properties Of Nanocrystalline 3C-Sic Thin Films By HW-CVD Using Sih4/CH4/H-2 System , Thin Solid Films,vol.516,2008,pp.633-636.

[30]S.Okoli , R.Haubner, R.B.Lux , “Influence Of The Filament Material On Low-Pressure Hot-Filament Cvd Diamond Deposition , Journal De Physique II, vol.1,1991,pp.923-930.

[31]W.D. Kingery , H.K Brown , “Introduction To Ceramics , Journal of The Electrochemical Society , vol.124,1977,pp.152C.

[32]J. Song , S.H. Pak , N. Hwang , and H.J. Kim , “Effect Of Negatively Charged Species On The Growth Behavior Of Silicon Films In Hot Wire Chemical Vapor Deposition , Thin Solid Films, vol. 516,2008,pp.5122-5126.

[33]S.Lien , M.Tseng , C.Chao , “Tungsten Filament Effect On Electronic Properties Of Hot-Wire CVD Silicon Films For Heterojunction Solar Cell Application , Thin Solid Films , vol.517,2009,pp.4720-4723.

[34]A.Tabata ,M. Mori , “Structural Changes Of Hot-Wire CVD Silicon Carbide Thin Films Induced By Gas Flow Rates , Thin Solid Films , vol.516,2008,pp.62-629.

[35]I.Gouzman , A.Hoffman , “DC-Glow Discharge As A Key Step For The Bias-Enhanced Nucleation Of Diamond By The HF CVD Method , Diamond And Related Materials ,vol.7,1998,pp.209-214.

[36]Nakaoka, Masaki; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira,Makoto “Hydrogen Sensing Properties of Anodized TiO2 Film Sensors Equipped with Pd and Pt Electrodes in Different StructureNagasaki Symposium on Nano-Dynamics 2009 (NSND2024),p.30-31; 2009

[37]S.-Y CHOI, K.TAKAHASHI, T.MATSUUO“NQ Blister Formation Pd/Pt Double Metal Gate FET HydrogenSensors IEEE , vol.5,No.1,1984

[38]Bedair Sm , Mcdermott Bt , Reid Kg , Neudeck Pg , Cooper Ja , Melloch Mr “Extremely Low-Leakage GaAs P-I-N Junctions And Memory Capacitors Grown By Atomic Layer Epitaxy, IEEE Electron Device Letters,vol.11,1990,pp.261-263.


[39]O.Krutko , P. Kosel , “P-Type Polycrystalline Diamond Layers By Rapid Thermal Diffusion Of Boron, .Applied Physics Letters , vol.76,2000,pp.849-851.

[40]P.W. Atkins ,“Physical Chemistry Fifth edition ,OXFORD,1994,pp877-p878.

[41]D. V. Kerns, Jr., Fellow, W. P. Kang, Member, J. L. Davidson, Senior Member, Q. Zhou, Y. Gurbuz, Student Member “Total-Dose Radiation-Hard Diamond-Based Hydrogen Sensor TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 6, DECEMBER 1998

[42]W.M. Tang*, C.H. Leung and P.T. Lai“Enhanced Sensing Performance of MISiC Schottky-Diode Hydrogen Sensor by Using HfON as Gate Insulator 2011 IEEE.

[43]Yen-Ting Chiang, Yean-Kuen Fang, Tse-Heng Chou, Cheng-I Lin, Feng-Renn Juang, and Kung-Cheng Lin“The Impact of TiO2 Interface Layer on a Pd/n-LTPS Schottky Diode Hydrogen Detecting Performances IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 8, AUGUST 2010

電子全文 電子全文(網際網路公開日期:20221230)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top