跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭得山
研究生(外文):De-ShanKuo
論文名稱:新穎研製之高亮度氮化鎵發光二極體
論文名稱(外文):The Novel Investigation and Fabrication of High Brightness GaN-based Light Emitting Diodes
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:117
中文關鍵詞:氮化鎵發光二極體銦錫氧化物濕蝕刻
外文關鍵詞:GaNlight emitting diodeITOwet etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文主要是探討以創新技術研製高亮度之氮化鎵發光二極體。本研究主要提出三個方向來提升氮化鎵發光二極體的光取出效率,包含元件電流散佈的改善、表面粗化與晶粒側壁外觀。首先,以氬氣電漿處理法來擇區破壞氮化鎵發光二極體於P型電極下方的P型氮化鎵表面電性。因此,在電漿處理過之區域所形成的絕緣特性之P-型氮化鎵表面,不僅可以改善發光二極體在P-型電極下方之電流擴散效果還能提高出光亮度。此外,經過氬氣電漿表面處理之發光二極體,在高電流操作下之光電特性可優於傳統與以二氧化矽作為電流阻障層之發光二極體。
為了提高氮化鎵發光二極體的發光效率,實驗上以新的粗化製程方式來比較其發光效益。首先,以製作好的嵌埋式多空孔圖案陣列於藍寶石基板與氮化鎵介面處的氮化鎵發光二極體的結構。其高密度空孔陣列圖案的分布可較傳統製程方式的發光二極體提高56%的出光亮度,明顯的提升效果主要是歸因於嵌埋式高密度空孔陣列以及空氣與氮化鎵的折射係數差異的合併效應。另外一個方法是直接在氮化鎵發光二極體上之銦錫氧化物表面做粗化,實驗發現在室溫下使用氯化氫、三氯化鐵、去離子水溶液之重量百分比例分別為30%、30%與40%,蝕刻銦錫氧化物薄膜兩分鐘後,可形成銦錫氧化物奈米柱,此粗化方法可提高氮化鎵發光二極體出光強度22%。
使用磷酸可選擇性缺陷溼蝕刻的方式,可成功製作出側壁倒角之氮化鎵發光二極體結構。以選擇性缺陷溼蝕刻的方式所製作出來的氮化鎵倒角側壁,可提高發光二極體30%的出光亮度。為了再提高光取出效率,進一步製作結合磷酸溼蝕刻的氮化鎵倒角側壁與雷射燒蝕藍寶石基板側壁的導光結構之氮化鎵發光二極體,此結構顯示氮化鎵發光二極體的出光亮度可提高到38%。此外,將試片浸入220oC磷酸放置40分鐘的蝕刻製程方法,可有效去除雷射燒蝕後的灰屑汙染物之。使用這項技術不僅適合大規模量產也可省去昂貴的先進雷射切割機所需之成本。利用此技術所製作的發光二極體相較於傳統切割製程可提高出光亮度34%而且不影響其原有光電特性。

Novel methods of fabricating high brightness of GaN-based LEDs were successfully demonstrated in this dissertation. This dissertation proposed three directions to enhance the light extraction efficiency for fabrication of GaN-based LEDs, include the methods of the current spreading improvement, texturing surface, and chip lateral shaping. Firstly, it was demonstrated that using Ar plasma treatment method can selectively damage the area underneath p-pad electrode of GaN-based light-emitting diodes (LEDs). Therefore, the damage area formed a highly resistive p-GaN surface could not only improve the current spreading but also enhance the light output power for the LEDs. Moreover, the LED with Ar plasma treatment is superior to the conventional one and the one with SiO2 current blocking layer while operating at a higher injection current.
The novel approaches of texturing methods were utilized to compare and obtain higher light extraction efficiency for GaN-based LED. GaN-based LEDs with a plurality of air voids array pattern embedded at GaN/sapphire interface has been successively fabricated. The air voids array embedded LEDs show 56% higher light output power enhancement than conventional LEDs. This significant enhancement is attributable to a combined effect of higher density of air voids array and large refractive index difference between the embedded air and the GaN. Another method is to directly texture the surface of indium-tin-oxide (ITO) on GaN-based light-emitting diodes (LEDs). It was found that high density ITO nanorods were formed after the LED samples were immersed in a solution consists of HCl (30%), FeCl3 (30%) and de-ionized water (40%) for 2 min at room temperature. It was also found that output power of the LEDs was 21% higher than that of conventional LEDs.
GaN-based light-emitting diodes (LEDs) with undercut sidewalls were successfully fabricated by defect-selective wet etching with phosphoric acid. The output intensity of the LEDs prepared by defect-selective wet etching was 30% higher. To further improve the light extraction efficiency, GaN-based light-emitting diodes (LED) with phosphoric acid etched oblique GaN sidewall and laser-ablated light guiding structure on a sapphire substrate were also fabricated. It was found that the output intensity was 40% higher than that of conventional one. Moreover, the debris contaminations caused by the laser ablation was effectively removed with the method of immersing the samples into H3PO4 at 220 °C for 40 min. With this technique, the cost of advanced laser scribing machine could be omitted and was easy for mass production. It was also found that the fabricated LEDs could enhance the light output power by 34% compared to the conventional laser cutting method and without degrading its electrical characteristics.

Contents
Abstract (Chinese)--------------------------------------------------------------------I
Abstract (English)-------------------------------------------------------------------III
Acknowledge--------------------------------------------------------------------------V
Contents-------------------------------------------------------------------------------VI
Table Captions-----------------------------------------------------------------------IX
Figure Captions-----------------------------------------------------------------------X
Chapter 1 Introduction----------------------------------------------------------1
1.1 Background--------------------------------------------------------------------------------1
1.2 Organization of this dissertation--------------------------------------------------------2
Chapter 2 Experiment and theory of this research-------------------7
2.1 Fabrication process of the devices------------------------------------------------------7
2.1.1 Crystal growth of the devices------------------------------------------------------7
2.1.2 Epitaxy structure of GaN based LEDs--------------------------------------------8
2.1.3 Device process procedures----------------------------------------------------------9
2.2 Characterizations of the LEDs---------------------------------------------------------12
2.2.1 Transmittance and reflectance----------------------------------------------------12
2.2.2 Circular transmission line model (CTLM) -------------------------------------13
2.2.3 EL spectra intensity----------------------------------------------------------------13
2.2.4 IS power measurement------------------------------------------------------------15
2.2.5 Electro-static discharge simulator-----------------------------------------------16
2.3 Theory of the research------------------------------------------------------------------18
2.3.1 Current spreading mechanism----------------------------------------------------18
2.3.2 Optical light extraction properties------------------------------------------------19
2.3.3 Laser cutting sapphire mechanism-----------------------------------------------23
Chapter 3 Light extraction improvement by modification of current spreading with GaN-based LEDs ------------------------------35
3.1 Introduction-------------------------------------------------------------------------------35
3.2 GaN-based LEDs with Ar plasma treatment-----------------------------------------37
3.3 Summary----------------------------------------------------------------------------------41
Chapter 4 Light extraction improvement by texturing top and bottom surface for GaN-based LEDs-------------------------------------50
4.1 Introduction-------------------------------------------------------------------------------50
4.2 Fabrication of GaN-based LED with embedded air voids array structure-------52
4.3 Efficiency Improvement of GaN-Based LEDs by direct wet etching of ITO layer--------------------------------------------------------------------------------------56
4.4 Summary----------------------------------------------------------------------------------59
Chapter 5 Light extraction improvement by laterally texturing and shaping methods for GaN-based LEDs----------------------------74
5.1 Introduction-------------------------------------------------------------------------------74
5.2 Nitride-based LEDs with phosphoric acid etched undercut sidewalls------------79
5.3 Nitride-based LEDs with oblique sidewalls and a light guiding structure-------81
5.4 GaN-based LEDs with sapphire debris removed by phosphoric etching--------84
5.5 Summary----------------------------------------------------------------------------------88
Chapter 6 Conclusion and future work--------------------------------112
6.1 Conclusion------------------------------------------------------------------------------112
6.2 Future work-----------------------------------------------------------------------------114
Reference---------------------------117
Reference
[1] R. Juza and H. Hahn, Anorg. Allegem. Chem., Vol. 234, pp. 282, 1940.
[2] H. Amano, N. Sawaki, and I. Akasaki Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett., Vol. 48, pp. 353-355, 1986 S. Strite and H. Morkog, J. Vat. Sci. Tcchnol. B 10, 1237 (1992).
[3] S. Nakamura, M. Senoh, S. Nagahama and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes, Jpn. J. Appl. Phys. 35, L74-L76, 1996.
[4] S. Nakamura, “GaN Growth Using GaN Buffer Layer Jpn. J. Appl. Phys. 30, L1705, 1991.
[5] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films, Jpn. J. Appl. Phys. 31, L139-L142, 1992.
[6] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209 (1989).
[7] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).
[8] S. Nakamura et al., “InGaN / GaN / AlGaN Based Laser Diodes with Modulation -Doped Strained-Layer Superlattices, J. Appl. Phys. Vol.36, L1568-L1571, 1997.
[9] C. P. Chan, T. M. Yue, C. Surya, A. M. C. Ng, A. B. Djurisic, F. Scholz, C. K. Liu, and M. Li, “Enhancement of Extraction Efficiency in Laser-debonded GaN Light Emitting Diodes, Electron Devices and Solid-State Circuits, IEEE Conference on Date of Conference: 19-21 Dec. 2005
[10] T. Paskova, D. A. Hanser, and K. R. Evans, “GaN Substrates for III-Nitride Devices, Proceedings of the IEEE, Vol. 98, No. 7, July 2010
[11] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes, Jpn. J. Appl. Phys., Vol. 35, pp. L74-L76, 1997.
[12] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, 1989.
[13] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, Thermal Annealing Effects on P-Type Mg-Doped GaN Films, Jpn. J. Appl. Phys., Vol. 31, pp. L139-L141, 1992.
[14] I. Akasaki and Hiroshi, “Breakthroughs in Improving Crystal Quality of GaN and Invention of the p–n Junction Blue-Light-Emitting Diode, Jpn. J. Appl. Phys.,Vol. 45, No. 12, 2006, pp. 9001-9010.
[15] S. Nakamura, M. Senoh, N. Iwasa and S.I. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures, Jpn. J. Appl. Phys., Vol.34, L797-L799, 1995.
[16] C. H. Ko, Y. K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin and J. Webb, “P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diode Structure Grown by Metal-Organic Vapor-Phase Epitaxy, Jpn. J. Appl. Phys., Vol. 41, 2489-2492, 2002.
[17] T. C. Wen and W. I. Lee, “Influence of Barrier Growth Temperature on the Properties of InGaN/GaN Quantum Well, Jpn. J. Appl. Phys., Vol. 40, 5302-5303, 2001.
[18] J. K Sheu, C. J Pan, G. C. Chi, C. H. Kuo, L. W Wu, C. H. Chen, S. J. Chang and Y. K. Su, “White-light emission from InGaN-GaN multi quantum-well light-emitting diodes with Si and Zn codoped active well layer, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, 2002.
[19] H. P. Maruskas and J. J. Tietjen, Appl. Phys. Lett. Vol. 15 (1969) 327
[20] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates, Appl. Phys. Lett., vol. 12, no. 4, pp. 156–159, 1968.
[21] H. M. Manasevit and W. I. Simpson, “Single-crystal silicon on sapphire substrate, J. Appl. Phys., vol. 35, no. 4, pp. 1349–1351, 1964.
[22] I. W. Shockley, Research and Investigation of Inverse Epitaxial UHF Power Transistors, Report No. ALTOR-64-207. Air Force Atomic Laboratory, Wright Patterson Air Force Base, Ohio (1964).
[23] ESD Association standard test method for electrostatic discharge sensitivity testing Human Body Model (HBM) component level (ANSI/ESD5.1-2001)
[24] P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, G. Mourou: “Machining of sub-micron holes using a femtosecond laser at 800nm, Optics Comm., 114, pp. 106-110 (1995)
[25] J. M. Lee, K. Y. Um. and K. G. Han, J. H. Jang and T. K. Yoo Scribing and cutting of sapphire wafer with Q-switched Nd:YAG laser, IEEE conference, Lasers and Electro-Optics, 1999. CLEO/Pacific Rim '99. The Pacific Rim Conference on Vol. 2
[26] S. Nakamura, G. Fasol. The Blue Laser Diode. New York: Springer; 1997.
[27] E. F. Schubert and J. K. Kim “Solid-state light sources getting smart, Science 308, pp. 1274-1278, 2005.
[28] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates, IEEE Photon. Technol. Lett., Vol 18, Issue 5, pp. 1152- 1154, 2006
[29] W. H. Lan Wavelength shift of gallium nitride LED with p-down structure, IEEE Trans. Electron Devices, Vol. 52, pp. 1217-1219, 2005.
[30] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. Huo, M. J. Jou, Y. H. Yu, and A. Lin, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 41, pp. 1403-1409, 2005.
[31] T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C.H. Hong, E. K. Suh, H. K. Cho, and H. Kong, “Enhanced light output from aligned micropit InGaN-based LEDs using wet-etch sapphire patterning, Applied Physics Letters, Vol. 90, 131107-131109, 2007.
[32] J. K. Sheu, I. H. Hung, W. C. Lai, S. C. Shei, M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads, Applied Physics Letters, Vol. 93, pp. 103507-103509, 2008.
[33] H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E. K. Suh, C. H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distribution of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN LED, Appl. Phys. Lett., 92, pp. 061118-061120, 2008.
[34] H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment, Applied Physics Letters, Vol.92, pp. 161113-161115, 2008.
[35] C. Huh, J. M. Lee, D. J. Kim, S. J. Park, Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer “Journal of Applied Physics, Vol. 92, pp. 2248-2250, 2002.
[36] S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrode, Electrochemical and Solid-State Lett., Vol. 10, No. 6, pp. H175-H177, 2007.
[37] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen and S. M. Chen, “Improved light-output power of GaN LEDs by selective region activation, IEEE Photon. Technol. Lett. Vol. 16, pp. 1444-1446, 2004.
[38] S. Nakamura, M. Suda, M. Suhara, T. Okumura, CS Man Tech Conference, Vancouver, British Columbia, Canada, April 24–27, 2006.
[39] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. H. Baik, S. J. Pearton, B. Luo, F. Ren, and J. M. Zavada, “Hydrogen plasma passivation effects on properties of p-GaN, Journal of Applied Physics, Vol. 92 pp. 3960-3965. 2003
[40] S. J. Chang, S. C. Wei, Y. K. Su, R. W. Chuang, S. M. Chen, and W. L. Li, Nitride-based LEDs with MQW active region's grown by different temperature profiles, IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1806-1808, 2005.
[41] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, Nitride-based flip-chip ITO LEDs, IEEE Transactions on Advanced Packaging, vol. 28, no. 2, pp. 273-277, 2005.
[42] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. A. Tsai, J. K. Sheu, and C. T. Lee, Nitride-based LEDs with 800 degrees C grown p-AllnGaN-GaN double-cap layers, IEEE Photonics Technology Letters, vol. 16, no. 6, pp. 1447-1449, 2004.
[43] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, Highly reliable nitride-based LEDs with SPS plus ITO upper contacts, IEEE Journal of Quantum Electronics, vol. 39, no. 11, pp. 1439-1443, 2003.
[44] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park,Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface. J. Appl. Phys. 93, 9383, 2003.
[45] H. G. Kim, T. V. Cuong, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, and C. H. Hong, Improved GaN-based LED light extraction efficiencies via selective MOCVD using peripheral microhole Arrays. IEEE Photonics Technol Lett. 20, 2973, 2008.
[46] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, C. C. Kao, Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates Journal of Crystal Growth, 311, 2973, 2009
[47] T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kua, and S. C. Wang, Enhancement in Light Output of InGaN-Based Microhole Array Light-Emitting Diodes, IEEE Photonics Technol. Lett. 17, 1163, 2005.
[48] A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuch,GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth, Appl. Phys. Lett. 92, 113514, 2008.
[49] M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes, Adv. Mater. 20, 1253, 2008.
[50] J. H. Lee, J. T. Oh, J. S. Park, J. W. Kim, Y. C. Kim, J. W. Lee, and H. K. Cho, “Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire, Phys. Status Solidi C 3, 2169, 2006.
[51] H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, Effect of periodic deflector embedded in InGaN/GaN light emitting diode,Appl. Phys. Lett. 90, 261117, 2007.
[52] H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN LEDs. Appl. Phys. Lett 95, 221110, 2009.
[53] H. G. Kim, H. Y. Kim, H. K. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hongz, Enhanced light output power of InGaN/GaN LEDs with embedded air Prisms. Electrochemical and Solid-State Letters, 13, H42, 2010.
[54] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett., vol. 84, pp, 855-857, 2004
[55] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers, IEEE Photon. Technol. Lett., vol. 16, pp. 1447-1449, 2004.
[56] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei and J. K. Sheu, Nitride-based LEDs with indium tin oxide electrode patterned by imprint lithography, Appl. Phys. Lett., Vol. 91, Art. no. 013504, 2007.
[57] K. J. Byeon, H. W. Park, J. Y. Cho, K. Y. Yang, J. H. Baek, G. Y. Jung and H. Lee, Fabrication of photonic crystal structure on indium tin oxide electrode of GaN-based light-emitting diodes, Phys. Status Solidi (a), Vol. 208, pp. 480-483, 2011.
[58] D. S. Leem, J. Cho, C. Sone, Y. Park and T. Y. Seong, “Light output enhancement of GaN-based light-emitting diodes by using hole patterned transparent indium tin oxide, J. Appl. Phys., Vol. 98, Art. no. 076107, 2005.
[59] Y. C. Shin, D. H. Kim, D. J. Chae, J. W. Yang, J. I. Shim, J. M. Park, K. M. Ho, K. Constant, H. Y. Ryu and T. G. Kim, “Effects of nanometer-scale photonic crystal structures on the light extraction from GaN light-emitting diodes, IEEE J. Quan. Electron., Vol. 9, pp. 1375-1380, 2010.
[60] C. Liao and Y. S. Wu, “InGaN-GaN LED performance improved by roughening indium tin oxide window layer via natural lithography, Electrochem. Solid-State Lett., Vol. 13, pp. J8-J10, 2010
[61] R. H. Horng, S. H. Huang and C. C. Yang, “Efficiency improvement of GaN-based LEDs with ITO texturing window layers using natural lithography, IEEE J. Sel. Top. Quan. Electron., Vol. 12, pp. 1196-1201, 2006.
[62] J. H. Kang, H. G. Kim, J. H. Ryu, H. K. Kim, H. Y. Kim, J. Joo, M. S. Lee, Y. J. Park, P. Uthirakumar and C. H. Hong, “Enhancement of light output power in InGaN/GaN LEDs with nanoroughed hemispherical indium tin oxide transparent ohmic contacts, Electrochem. Solid-State Lett., Vol. 13, pp. D1-D3, 2010
[63] M. Scholten and J. E. A. M. van den Meerakker, “On the mechanism of ITO etching: The specificity of halogen acids, J. Electrochem. Soc., Vol. 140, pp. 471-475, 1993
[64] J. E. A. M. van den Meerakker, P. C. Baarslag and M. Scholten, “On the mechanism of ITO etching in halogen acids: The influence of oxidizing agents, J. Electrochem. Soc., Vol. 142, pp. 2321-2325, 1995
[65] C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, T. K. Ko, and C. F. Shen, GaN-based LEDs output power improved by textured GaN /Sapphire interface using in situ SiH4 treatment process during epitaxial growth, IEEE Journal of Selected topics in Quantum Electronics, 15, 4, pp. 1275-1280, 2009.
[66] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN multiquantum well light-emitting diodes, IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 744-748, Jul./Aug. 2002.
[67] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS ITO upper contacts, IEEE J. Quantum Electron., vol. 39, no. 11, pp. 1439-1443, Nov. 2003.
[68] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang and B. R. Huang, Nitride-based LEDs with p-InGaN capping layer, IEEE Tran. Electron. Dev., Vol. 50, pp. 2567-2570, 2003
[69] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, 400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 744-748, 2002.
[70] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, Highly reliable nitride based LEDs with SPS+ITO upper contacts, IEEE J. Quan. Electron., Vol. 39, pp. 1439-1443, 2003.
[71] S. Nakamura and M. Senoh, “Superbright green InGaN single quantum-well-structure light-emitting diodes, Jpn. J. Appl. Phys.,vol. 34, pp. L1332-L1335, 1995.
[72] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN–GaN multiquantum well blue and green LEDs, IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 2, pp. 278–283, Mar./Apr. 2002.
[73] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based, light-emitting diode by micro-roughening of the p-GaN surface, J. Appl. Phys., vol. 93, pp. 9383–9385, 2003.
[74] C. C. Yang, R. H. Horng, C. E. Lee, W. Y. Lin, K. F. Pan, Y. Y. Su, and D. S. Wuu, “Improvement in extraction efficiency of GaN-based lightemitting diodes with textured surface layer by natural lithography, Jpn. J. Appl. Phys, vol. 44, pp. 2525-2507, 2005.
[75] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800 C-grown p-AlInGaN–GaN double-cap layers, IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1447–1449, Jun. 2004.
[76] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (Alx Ga1-x)0.5 In0.5 P/GaP light-emitting diodes exhibiting )50% external quantum efficiency, Appl. Phys. Lett., vol. 75, pp. 2365–2367, 1999.
[77] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plössl, F. Kühn, H. Zull, M. Winter, and V. Härle, “InGaN on SiC LEDs for high flux and high current applications, Physica Status Solidi A, vol. 194, pp. 399–402, 2002.
[78] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side-walls, IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 750–752, Mar. 2004.
[79] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, and C. C. Chang, “Enhanced light output power in InGaN light-emitting diodes by fabricating inclined undercut structure, J. Electrochem. Soc., vol. 153, pp. G1020–G1024, 2006.
[80] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22o undercut sidewalls, IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 19–21, Jan. 2005.
[81] D. Zhuang and J. H. Edgar, “Wet etching of GaN, ALN, and SiC: A review, Mater. Sci. Eng. R, vol. 48, pp. 1–46, 2005.
[82] J. L. Weyher, P. D. Brown, J. L. Rouvière, T. Wosinski, A. R. A. Zauner, and I. Grzegory, “Recent advances in defect-selective etching of GaN, J. Cryst. Growth, vol. 210, pp. 151–156, 2000.
[83] G. Kamler, J. Smalc, M. Woz´niak, J. L. Weyher, R. Czernecki, G. Targowski, M. Leszczyn´ski, I. Grzegory, and S. Porowski, “Selective etching of dislocations in violet-laser diode structures, J. Cryst. Growth, vol. 293, pp. 18–21, 2006.
[84] X. J. Ning, F. R. Chien, P. Pirouz, J. W.Yang, and M. A. Khan, “Growth defects in GaN films on sapphire: The probable origin of threading dislocations, J. Mater. Res., vol. 11, pp. 580–592, 1996.
[85] C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C. Huang, C. I. Chiang, J. Webb, and W. J. Lin, “On the carrier concentration and hall mobility in GaN epitaxial layers, Jpn. J. Appl Phys., vol. 41, pp. L226–L228, 2002.
[86] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue LEDs, IEEE J. Quant. Electron., 38, pp. 446-450, 2002
[87] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang and Y. Z. Chiou, Nitride-based LEDs with textured sidewalls and pillar waveguides, IEEE Photon. Technol. Lett., 18, pp. 2517-2519, 2003
[88] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw InGaN-GaN multiquantum well blue and green LEDs, IEEE J. Sel. Top. Quantum Electron, 8, pp. 278-283, 2002
[89] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett., 84, pp. 855-857, 2004
[90] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee and D. S. Wuu, GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography, Appl. Phys. Lett., 86, 221101, 2005
[91] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W.C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, Nitride-based LEDs with 800◦C-grown p-AlInGaN/GaN double cap layers, IEEE Photon. Technol. Lett., 16, pp. 1447-1449, 2004
[92] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke and H. M. Lo, Nitride-based LEDs with textured side-walls, IEEE Photon. Technol. Lett., 16, pp. 750-752, 2004
[93] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh and C. C. Chang, Enhanced light output power in InGaN light-emitting diodes by fabricating inclined undercut structure, J. Electrochem. Soc., 153, G1020–G1024, 2006
[94] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu and C. F. Lin, Light-output enhancement in a nitride-based light-emitting diode with 22◦ undercut sidewalls, IEEE Photon. Technol. Lett., 17, pp. 19–21, 2005
[95] D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon and S. C. Hung, Nitride-based LEDs with phosphoric acid etched undercut sidewalls, IEEE Photon. Technol. Lett., 21, pp. 510–512, 2009
[96] Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So and H. Liu, Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector, J. Electron. Mater., 32, pp. 1523–1526, 2003
[97] C. H. Lin, J. Y. Tsai, C. C. Kao, H. C. Kuo, C. C. Yu, J. R. Lo and K. M. Leung, Enhanced light output in InGaN-based light-emitting diodes with omnidirectional one-dimensional photonic crystals, Japan. J. Appl. Phys., 45, pp. 1591–1593, 2006
[98] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu and A. Lin, Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates, IEEE J. Sel. Top. Quantum Electron., 8, pp. 278–283, 2002
[99] T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C. H. Hong, E. K. Suh, H. K. Cho and B. H. Kong, Enhanced light output from aligned micropit InGaN-based LEDs using wet-etch sapphire patterning, Appl. Phys. Lett., 90, 131107, 2007
[100] K. T. Lee, Y. C. Lee, J. Y. Chang and J. Gong, Improvement on optical properties of GaN light-emitting diode with mesh-textured sapphire back delineated by laser scriber, IEEE Photon. Technol. Lett., 21, pp. 477–479, 2009
[101] L. Kuna, A. Haase, C. Sommer, E. Zinterl, J. R. Krenn, F. P. Wenzl, P. Pachler, P. Hartmann, S. Tasch and G. Leising, Improvement of light extraction from high-power flip-chip light-emitting diodes by femtosecond laser direct structuring of the sapphire backside surface, J. Appl. Phys., pp. 104, 074507, 2008
[102] S. Nakamura, T. Mukai and M. Senoh,“Candela-class high brightness InGaN/AlGaN double-heterostructure blue light-emitting diodes, Appl. Phys. Lett., Vol. 64, pp. 1687-1689, 1994.
[103] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III-nitride semiconductors and their applications to short wavelength light emitters, Jpn. J. Appl. Phys., Vol. 36, pp. 5393-5408, 1997.
[104] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN multiquantum well blue and green LEDs, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 278-283, 2002.
[105] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai and J. K. Sheu, In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer, Solid State Electron., Vol. 47, pp. 2027-2030, 2003.
[106] J. T. Chu, H. W. Huang, C. C. Kao, W. D. Liang, F. I. Lai, C. F. Chu, H. C. Kuo and S. C. Wang, “Fabrication of large-area GaN-based light-emitting diodes on Cu substrate, Jpn. J. Appl. Phys., Vol. 44, pp. 2509-2511, 2005
[107] W. H. Lan, “Wavelength shift of gallium nitride LED with p-down structure, IEEE Tran. Electron. Dev., Vol. 52, pp. 1217-1219, 2005
[108] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, Highly reliable nitride based LEDs with SPS+ITO upper contacts, IEEE J. Quan. Electron., Vol. 39, pp. 1439-1443, 2003
[109] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart, Science, Vol. 308, pp. 1274-1278, 2005
[110] S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim and S. J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes, Appl. Phys. Lett., Vol. 94, Art. no. 231123, 2009.
[111] H. Kim, K. K. Kim, K. K. Choi, H. K. Kim, J. Song, J. Cho, K. H. Baik, C. Sone, Y. Park and T. Y. Seong, “Design of high-efficiency GaN-based LEDs with vertical injection geometry, Appl. Phys. Lett., Vol. 91, Art. no. 023510, 2007.
[112] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys., Part 2, Vol. 40, pp. L583-L585, 2001.
[113] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes, Appl. Phys. Lett., Vol. 78, pp. 3379-3381, 2001.
[114] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22o undercut sidewalls, IEEE Photon. Tech. Lett., Vol. 17, pp. 19-21, 2005.
[115] M. Koike, N. Shibata, H. Kato and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications, IEEE J. Sel. Top. Quantum Electron., Vol. 8, pp. 271-277, 2002.
[116] T. Nilsson, F. Wagner and B. Richerzhagen,“Scribing of GaN wafer for white LED by water-jet-guided laser, Proc. SPIE, Vol. 5366, pp. 200-206, 2004.
[117] M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi and K. Fukumitsu, “Advanced dicing technology for semiconductor wafer-Stealth dicing, IEEE Trans. Semicond. Manuf., Vol. 20, pp. 259-265, 2007.
[118] J. H. Lee, N. S. Kim, S. S. Hong and J. H. Lee, Enhance extraction efficiency of InGaN-based light-emitting diodes using 100-kHz femtosecond-laser-scribing technology, IEEE Electron. Dev. Lett., Vol. 31, pp. 213-215, 2010.
[119] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN multiquantum well light-emitting diodes, IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 744–748, Jul./Aug. 2002.
[120] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS_ITO upper contacts, IEEE J. Quantum Electron., vol. 39, no. 11, pp. 1439–1443, Nov. 2003.
[121] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu, and J. F. Chen, InGaN–AlInGaN light-emitting diodes, IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 559–561, Jun. 2001.
[122] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, 400 nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes, IEEE J. Sel. Top. Quantum Electron., 8, pp. 744–748, 2002
[123] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, Highly reliable nitride based LEDs with SPS+ITO upper contacts, IEEE J. Quantum Electron., 39, pp. 1439–1443, 2003
[124] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang, and B. R. Luang, “Nitride-based LEDs with p-InGaN capping layer, IEEE Tran. Electron. Dev., vol. 50, no. 12, pp. 2567–2570, Dec. 2003.
[125] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side walls, IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 750–752, Mar. 2004.
[126] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400 nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes, IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 4, pp. 744–748, Jun.–Aug. 2002.
[127] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu, and I. C. Lin, “Vertical high quality mirror-like facet of GaN-based devices by reactive ion etching, Jpn. J. Appl. Phys., vol. 40, no. 4B, pp. 2762–2764, 2001.
[128] D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-based LEDs with phosphoric acid etched undercut sidewalls, IEEE Photon. Technol. Lett., vol. 21, no. 8, pp. 510–512, Apr. 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊