跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡均富
研究生(外文):Chun-FuTsai
論文名稱:三五族化合物半導體發光二極體光電特性之改善與研究
論文名稱(外文):Investigation and Improvement in Optoelectrical Characteristics of III-V Compound Semiconductor Lighting Emitting Diodes
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:242
中文關鍵詞:發光二極體三五族化合物半導體電流阻擋層表面粗化側牆處理微米柱圖案化藍寶石基板直接異質磊晶橫向成長
外文關鍵詞:light-emitting diodesIII-V compound semiconductorcurrent blocking layersurface-rougheningsidewall treatmentmicro-pillarpatterned sapphire substratesdirect heteroepitaxial lateral overgrowth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要為應用晶粒製程技術與粗化/圖案化藍寶石基板來改善三五族化合物之發光二極體。其中晶粒製程之研究包含,電流阻擋層設計、晶粒表面粗化、晶粒側牆處理、晶粒不同型態的結構。而粗化/圖案化藍寶石基板之研究,我們將平坦與圖案化的藍寶石基板作粗化處理以及使用不同折射率之材料於藍寶石基板上形成圖案。
於應用電流阻擋層以改善氮化鎵發光二極體之研究中,第一部份我們成功地利用旋轉塗佈法與高溫烘烤,將二氧化矽奈米微粒塗佈於發光二極體之表面形成電流阻擋層,取代傳統的電漿輔助化學氣相沉積並提升15.7%的光輸出功率。第二部份我們利用單一步驟式的製作來形成蕭特基接觸的電流阻擋層,於光輸出功率得到16.3%的提升。第三部份我們將傳統的電流阻擋層結合高反射率的鋁層以減少電極的吸光損耗,其光輸出功率可得到更進一步的改善,提升25.8%。
於應用晶粒表面粗化以改善磷化鋁銦鎵發光二極體之研究中,我們將二氧化矽奈米微粒塗佈於發光二極體之表面再以感應式偶合電漿蝕刻P型磷化鎵表面以提升光取出。量測可得發光強度提升8%到46%,光輸出功率提升3.5%到31.5%。
於應用晶粒側牆處理以改善氮化鎵發光二極體之研究中,第一部分我們利用60°C的氫氧化鉀溶液對氮化鎵晶粒的側牆進行濕式化學蝕刻。其光輸出功率可提升17.3%,並將反向漏電流由230 nA降至40 nA。第二部分我們進行無蝕刻的晶粒側牆處理,於晶粒周邊形成銀柱微米陣列,在20毫安培電流注入下光輸出功率可得到22%的提升。
於應用晶粒不同型態的結構以改善氮化鎵發光二極體之研究中,第一部分我們利用感應式偶合電漿乾蝕刻於晶粒周邊與晶粒主體形成深洞微米陣列的結構,在電性無明顯劣化下,光輸出功率可分別提升5%與14.4%。第二部分我們利用感應式偶合電漿乾蝕刻將晶粒主體製作成六角陣列式的微米柱結構,有利光子直接取出並降低出光角度。量測可得發光強度提升26.3%,光輸出功率提升13.4%。
於應用粗化/圖案化藍寶石基板改善氮化鎵發光二極體之研究中,第一部份我們成功地利用鎳叢簇與感應式偶合電漿乾蝕刻於平坦與圖案化藍寶石基板上製作出隨機奈米粗化的表面。除了晶格品質有所改善,相較於使用傳統平坦藍寶石基板來成長的氮化鎵發光二極體,有奈米粗化的平坦藍寶石基板之發光二極體可提升7.9%與21.3%的光輸出功率 ; 而相較於使用傳統微米圖案化藍寶石基板來成長的氮化鎵發光二極體,有奈米粗化的圖案化藍寶石基板之發光二極體可提升7.3%與11.4%的光輸出功率。第二部分將氮化鎵發光二極體結構以直接異質磊晶橫向技術成長於不同折射率的材料(氮化鋁、二氧化矽、氧化鋁、二氧化鈦)所形成之微米圖案陣列之上。除了有不同的出光角度,藉由圖案結構與橫向磊晶成長機制也可改善晶格品質並提升光輸出功率 ; 不同折射率之圖案其光輸出功率的提升從9%到最高可達47.6%。

The main purpose of this dissertation is to improve III-V compound semiconductor light-emitting diodes (LEDs) by chip process techniques and roughened/patterned sapphire substrates (PSSs). The investigation of chip process techniques includes current blocking layer (CBL) design, surface-roughening of chip, sidewall treatment of chip, and different structures of chip form. The investigation of roughened/patterned sapphire substrates, we utilized the roughening treatment on planar and patterned sapphire substrates, and formed patterns with different refractive indices on sapphire substrates.
In respect of research on applying current blocking layer (CBL) to improve GaN-based LEDs, in the first part, we successfully spun SiO2 nanoparticles onto the surface of GaN LEDs as the CBL by spin coating and high temperature baking, instead of plasma-enhanced chemical vapor deposition (PECVD). Here the light output power was increased by 15.7% at 20 mA. In the second part, we utilized one-step process to fabricate CBL with Schottky contact, the light output power was increased by 16.3% at 20 mA. In the third part, we combined conventional CBL with highly reflective aluminum layer to reduce the light absorption loss at opaque electrode. The light output power was further increased by 25.8% at 20 mA.
In respect of research on applying surface-roughening of chip to improve AlGaInP-based LEDs, we spun SiO2 nanoparticles onto the surface of LEDs and utilized inductively coupled plasma (ICP) to etch p-GaP surface to increase the light extraction. From measurements at 20 mA, we can get 8% to 46% enhancement in luminous intensity and 3.5% to 31.5% enhancement in light output power.
In respect of research on applying sidewall treatment of chip to improve GaN-based LEDs, in the first part, we utilized wet chemical etching on GaN LEDs sidewall by 60 °C KOH solution. The light output power was increased by 17.3% at 20 mA and the reverse leakage current was decreased from 230 nA to 40 nA at -5 V. In the second part, we utilized sidewall treatment without etching to form silver micro-pillar array around chip. We can get 22% enhancement in light output power at 20 mA.
In respect of research on applying different structures of chip form to improve GaN-based LEDs, in the first part, we formed micron deep hole array structure around chip and on chip by ICP dry etching, we can respectively get 5% and 14.4% enhancement in light output power at 20 mA, without electrical degradation. In the second part, we fabricated chip with hexagonal array of micro-pillar structure by ICP dry etching, which is beneficial for direct extraction of photon and reduction in view angle. From measurements at 20 mA, we can get 26.3% enhancement in luminous intensity and 13.4% enhancement in light output power.
In respect of research on applying roughened/patterned sapphire substrates to improve GaN-based LEDs, in the first part, we successfully fabricated planar and patterned sapphire substrates with random nano-roughening surface by Ni cluster and ICP dry etching. Besides improvement in crystal quality, as compared to GaN LEDs grown on conventional planar sapphire substrates, the light output power of GaN LEDs grown on roughened planar sapphire substrates was increased by 7.9% and 21.3% at 20 mA ; as compared to GaN LEDs grown on conventional patterned sapphire substrates, the light output power of GaN LEDs grown on roughened patterned sapphire substrates was increased by 7.3% and 11.4% at 20 mA. In the second part, we fabricated GaN LEDs grown on micro-patterned array with different refractive indices (AlN, SiO2, Al2O3, TiO2) by direct heteroepitaxial lateral overgrowth. Besides different view angles, we can get improvement in crystal quality and enhancement in light output power by pattern structures and epitaxial lateral overgrowth mechanism. The light output power of patterns with different refractive indices was increased from 9% to as high as 47.6%.

Abstract (in Chinese)..................................- i -
Abstract (in English)..................................- iii -
Acknowledgement (in Chinese)..........................- vi -
Contents.........................................- vii -
Table Captions.......................................- xi -
Figure Captions....................................- xii -
Chapter 1 Introduction…………………………………………………………………- 1 -
1.1 A brief history of GaAs-based LEDs for solid state lighting……………………- 1 -
1.2 A brief history of nitride-based LEDs for solid state lighting…………………...- 4 -
1.3 Organization of this dissertation ………………………………………………...- 5 -
Chapter 2 Performance Improvement of InGaN-based LEDs by Current Blocking Design...............................- 10 -
2.1 Theory of current spreading and current blocking layer (CBL)………………..- 10 -
2.2 Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer.........- 11 -
2.2.1 Motivation..............................- 11 -
2.2.2 Experimental details………………………………………………….- 11 -
2.2.3 Electrical and optical properties of LEDs………………………………...- 13 -
2.3 Improvement in the light output power of GaN-based light emitting diodes by one-step current blocking design………….……………………………………- 14 -
2.3.1 Motivation………………………………………………………………...- 14 -
2.3.2 Experimental details…………………………………………………...- 15 -
2.3.3 Electrical and optical properties of LEDs………………………- 16 -

2.4 Further improvement in the light output power of InGaN-based light emitting diodes by reflective current blocking design…………………………......…….- 17 -
2.4.1 Motivation……………………………………………………………….- 17 -
2.4.2 Experimental details …………………………………………….- 17 -
2.4.3 Electrical and optical properties of LEDs……………………………….- 18 -
2.5 Summary………………………………………………………………............- 21 -
Chapter 3 Improvement in Light Extraction of AlGaInP-based Light Emitting Diodes with Surface Roughening by Silicon Dioxide Nanoparticles……………………..- 46 -
3.1 Theory of light extraction and motivation………………- 46 -
3.2 Experimental details……………………………………………………………- 48 -
3.3 Electrical and optical properties of LEDs………………………………………- 50 -
3.4 Summary…………………………………………………………………..……- 51 -
Chapter 4 InGaN-based LEDs with Sidewall Treatments……………………………...- 68 -
4.1 Light extraction of GaN-based LEDs and motivation………………………….- 68 -
4.2 Further improvement in the light output power of InGaN-based light emitting
diodes by patterned sapphire substrate with KOH Wet-Chemical Etching on
sidewall…………………………………………………………………………- 69 -
4.2.1 Experimental details………………………………………………...……- 69 -
4.2.2 Electrical and optical properties of LEDs…………………………….…..- 70 -
4.3 Enhanced performance of InGaN-based LEDs with sidewall Ag Pillars………- 72 -
4.3.1 Experimental details…………………………………………...…………- 72 -
4.3.2 Electrical and optical properties of LEDs…………………...……………- 73 -
4.4 Summary……………………………………………………………………..…- 75 -


Chapter 5 Fabrication of InGaN-based LEDs with Concave and Convex Patterned
structures………………...............…………………………..……………….- 96 -
5.1 Motivation …………………………………………………………….………- 96 -
5.2 The InGaN-based LEDs with deep-hole array (DHA) patterned structure…….- 97 -
5.2.1 Experimental details……………………………………………………...- 97 -
5.2.2 Electrical and optical properties of LEDs……………………...…………- 98 -
5.2.3 Summary………………………………………………………………….- 99 -
5.3 The InGaN-based LEDs with hexagonal array of micro-pillar (HAMP) structure
………........…………………………………………………………………….- 99 -
5.3.1 Experimental details……………………………………………………...- 99 -
5.3.2 Electrical and optical properties of LEDs…………………………….…- 100 -
5.3.3 Summary………………………………………………………………...- 101 -
Chapter 6 Improvement in InGaN-based LEDs Grown on Nano-Roughened
Planar/Patterned Sapphire Substrates…...……………………...…………..- 118 -
6.1 Epitaxial techniques for GaN growth and motivation……………………..….- 118 -
6.2 InGaN-based LEDs grown on nano-roughened planar sapphire substrate …...- 121 -
6.2.1 Experimental details…………………………………………………….- 121 -
6.2.2 Electrical and optical properties of LEDs……………………………….- 123 -
6.3 InGaN-based LEDs grown on nano-roughened patterned sapphire substrate
………………………………………………………………………………...- 126 -
6.3.1 Experimental details…………………………………………………….- 127 -
6.3.2 Electrical and optical properties of LEDs………………………….……- 128 -
6.4 Summary……………………………………………………………………....- 132 -


Chapter 7 Patterned Structure with Different Materials on Sapphire Substrate for
InGaN-based LEDs…………………………………………………………- 175 -
7.1 Motivation……………………………………………………………………..- 175 -
7.2 Enhanced performance for InGaN-based LEDs with patterned AlN array on
sapphire substrate……………………………………………………………...- 175 -
7.2.1 Experimental details…………………………………………………….- 175 -
7.2.2 Electrical and optical properties of LEDs……………………………….- 176 -
7.2.3 Summary………………………………………………………………...- 178 -
7.3 Investigation in performance of InGaN-based LEDs with patterned oxide array on
sapphire substrate……………...………………………………………………- 178 -
7.3.1 Experimental details…………………………………………………….- 179 -
7.3.2 Electrical and optical properties of LEDs……………………………….- 180 -
7.3.3 Summary…………………………………………………………...……- 183 -
Chapter 8 Conclusions and Future Prospects…………………………………………- 214 -
8.1 Conclusions …………………………………………………………………...- 214 -
8.2 Future prospects……………………………………………………………….- 218 -

References………………………………………………………….………………….- 227 -
Publication List………………………………………………………………………..- 240 -
Vita………………………………………………………………………………….…- 242 -

[1]H. J. Round, “A note on carborundum, Electrical World, vol. 19, pp. 309-312, 1907.
[2]G. Desriau, “Scintillations of zinc sulfides with alpha-rays, J. Chiie Physique, vol. 33, p. 587, 1936.
[3]H. Welker, “On new semiconducting compounds, Zeitschrift fuer Naturforschung, vol. 7a, pp. 744-749, 1952.
[4]H. Welker, “On new semiconducting compounds II, Zeitschrift fuer Naturforschung, vol. 8a, pp. 248-251, 1953.
[5]H. C. Wang, “Investigation and Fabrication of AlGaInP and InGaN-based Light Emitting Diodes, Dissertation for Doctor of Philosophy, 2004.
[6]R. Braunstein,“ Radiative Transitions in Semiconductors, Phys. Rev, vol. 99, pp. 1892-1893, 1955.
[7]Jr. N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xP x) junctions, Appl. Phys. Lett., vol. 1, pp. 82, 1962.
[8]W. O. Groves, A. H. Herzog, and M. G. Craford, “The effect of nitrogen doping on GaAs1-xPx electroluminescent diodes, Appl. Phys. Lett., vol. 19, p. 184, 1971.
[9]W. O. Groves, and A. S. Epstein, “Epitaxial deposition of III-V compounds containing isoelectronic impurities, US Patent 4,001,056 issued Jan. 4, 1977.
[10]T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications, J. Appl. Phys., vol. 95, pp. 2203-2216, 2004.
[11]H. Rupprecht, J. M. Woodall, and G. D. Petit, “Efficient visible electroluminescence at 300 K from Ga1-xAlxAs p-n junctions grown by liquid-phase epitaxy, Appl. Phys. Lett., vol. 11, pp. 81-83, 1967.
[12]J. Nishizawa, K. Suto, and T. Teshima, “Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions, J. Appl. Phys. vol. 48, pp. 3484-3495, 1977.
[13]H. Ishiguro, K. Sawa, S. Nagao, H. Yamanaka, and S. Koike, High efficient GaAlAs light emitting diodes of 660 nm with a double heterostructure on a GaAlAs substrate, Appl. Phys. Lett., vol. 43, pp. 1034-1036, 1983.
[14]K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterosturcture visible lasers, Electron. Lett., vol. 21, p. 931, 1985.
[15]K. Itaya, M. Ishikawa, and Y. Uematsu, “636 nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes, Electron. Lett., vol. 26, p. 839, 1990.
[16]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes, Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990.
[17]F. A. Kish F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer bonded transparent substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes, Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
[18]Fletcher, Robert M., Kuo Chihping, Osentowski, Timothy D., Robbins, Virginia M., “Light-emitting diode with an electrically conductive window, U. S. Pat. 5, 008, 718, 1991.
[19]F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces, Appl. Phys. Lett., vol. 67, pp. 2060-2062, 1995.
[20]J. H. Zhao, A. H. Wang, Martin A. Green, and Francesca Ferrazza, “19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl. Phys. Lett., vol. 73, pp. 1991-1993, 1998.
[21]H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes, Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
[22]D. J. Lawrence, D. C. Abbas, D. J. Phelps, and F. T. J. Smith, “GaAsP LED’s with efficient transparent contacts for spatially uniform light emission, IEEE Trans. Electron Devices, vol. ED-30, no. 6, pp. 580-585, Jun. 1983.
[23]H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes, Appl. Phys. Lett., vol. 61, pp. 1775-1777, 1992.
[24]T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes, IEEE Electron Device Lett., vol. 24, no. 11, pp. 683-685, Nov. 2003.
[25]T. Gessmann, H. Luo, J. Q. Xi, K. P. Streubel, and E. F. Schubert, “Light-emitting diodes with integrated omnidirectionally reflective contacts, Proc. SPIE Int. Soc. Opt. Eng., vol. 5366, pp. 53-61, 2004.
[26]M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated inverted pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting )50% external quantum efficiency, Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999.
[27]H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN, Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
[28]J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN, J. Luminescence, vol. 4, pp. 63–66, 1971.
[29]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
[30]H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
[31]S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films, Jpn. J. Appl. Phys., vol. 31, pp. L457-L459, 1992.
[32]P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates, J. Appl. Phys., vol. 75, pp. 4515-4519, 1994.
[33]S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor, U.S. Patent 5,306,662, Apr. 26, 1994.
[34]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Enmitting Diodes, Jpn. J. Appl. Phys., vol. 34, pp. L1332-L1335, 1995.
[35]K. H. Huang and T. P. Chen, “Light-emitting diode structure, U.S. Patent 5,661,742, Aug. 26, 1997.
[36]T. Sasaki and T. Matsuoka, “Substrate-polarity dependence of metal-organic vapor-phase-epitaxy-grown GaN on SiC, J. Appl. Phys., vol. 64, pp. 4531-4535, 1988.
[37]C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01-12) Al2O3, and (0001)Si SiC substrates, J. Appl. Phys., vol. 76, pp. 236-241, 1994.
[38]Y. Sun, Y. H. Cho, H. M. Kim and T. W. Kang, “High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays, Appl. Phys. Lett., vol. 87, pp. 093115, 2005.
[39]C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer, J. Appl. Phys., vol. 92, pp. 2248-2250, 2002.
[40]A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density, Appl. Phys. Lett., vol. 71, pp. 2259-2261, 1997.
[41]M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode, Jpn. J. Appl. Phys., vol. 41, pp. L 1431-L1433, 2002.
[42]T. P. Chen, T. C. Hsu, C. Y. Luo, M. C. Hsu, and T. X. Lee, “Improvement in Light Extraction Efficiency of High Brightness InGaN-Based Light Emitting Diodes, Proc. SPIE, vol. 7216, pp. 1-10, 2009.
[43]E. F. Schubert, “Light Emitting Diodes and Solid-state Lighting, handbook.
[44]Tohru Oka and Tomohiro Nozawa, Power, vol. 29, pp. 668-670, 2008.
[45]E. F. Schubert, “Light Emitting Diodes, Cambridge, U.K.: Cambridge Univ. Press, 2003.
[46]J. K. Sheu, G. C. Chi, and M. J. Jou, “Enhanced output power in an InGaN–GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer, IEEE Photon. Technol. Lett., vol. 13, pp. 1164-1166, 2001.
[47]X. A. Cao, E. B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, and D. Walker, “Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes, Solid-State Electron., vol. 46, pp. 1235-1239, 2002.
[48]C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer, IEEE Photon. Technol. Lett., vol. 18, pp. 274-276, 2006.
[49]Y. B. Lee, R. Takaki, H. Sato, Y. Naoi1, and S. Sakai, “High efficiency GaN-based LEDs using plasma selective treatment of p-GaN surface, phys. stat. sol. (a), vol. 200, pp. 87-90, 2003.
[50]H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen, “InGaN/GaN light emitting diodes with a lateral current blocking structure, Jpn. J. Appl. Phys., vol. 43, pp. 2006-2007, 2004.
[51]S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes, Electrochem. Solid-State Lett., vol. 10, pp. H175-H177, 2007.
[52]M. A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving Light Output Power of the GaN-Based Vertical-Injection Light-Emitting Diodes by Mg+ Implanted Current Blocking Layer, IEEE Photon. Technol. Lett., vol. 21, pp. 688-690, 2009.
[53]H. Y. Lee, K. H. Pan, C. C. Lin, Y. C. Chang, F. J. Kao, and C. T. Lee, “Current spreading of III-nitride light-emitting diodes using plasma treatment, J. Vac. Sci. Technol. B, vol. 25, pp. 1280-1283, 2007.
[54]H. C. Wang, Y. K. Su, Y. H. Chung, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a current-blocking structure, Solid-State Electron., vol. 47, pp. 37-41, 2005.
[55]T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, “Current spreading and blocking designs for improving light output power from the vertical-structured GaN-based light-emitting diodes, IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 703-705, May 1, 2008.
[56]C. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, Y. H. Wang, and M. P. Houng, “Selective high resistivity region formation by a Ni catalyst on GaN light-emitting diodes, Semicond. Sci. Technol., vol. 23, pp. 025012-1–025012-4, 2008.
[57]S. C. Shei, W. C. Lai, J. K. Sheu, I. H. Hung, and S. J. Chang, “The Output Power Enhancements of GaN-Based Blue Light-Emitting Diodes with Highly Reflective Ag/Cr/Au Trilayer Omnidirectional Reflective Electrode Pads Jpn. J. Appl. Phys. vol. 48, pp. 102103-1–102103-4, 2009.
[58]J. K. Sheu, I. H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads, Appl. Phys. Lett., vol. 93, pp. 103507-1–103507-3, 2008.
[59]S. C. Shei, W. C. Lai, J. K. Sheu, I. H. Hung, and S. J. Chang, “Effects of p-Electrode Reflectivity on Extraction Efficiency of Nitride-Based Light-Emitting Diodes Appl. Phys. Exp., vol. 1, pp. 052001-1–052001-1, 2008.
[60]H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J. O. Song, Y. H. Lee, T. Y. Seong, “Improvement of the Light Output Power of GaN-Based Vertical Light Emitting Diodes by a Current Blocking Layer, Electrochem. Solid-State Lett., vol. 13, H237-H239, 2010.
[61]J. M. Hwang, W. H. Hung, and H. L. Hwang, “Efficiency Enhancement of Light Extraction in LED With a Nano-Porous GaP Surface, IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 608-610, Apr. 15, 2008.
[62]C. C. Liu, “Design and Fabrication of High Brightness LEDs, Dissertation for Doctor of Philosophy, 2004.
[63]Y. H. Chung, “Improvement on External Quantum Efficiency of AlGaInP-Based LEDs, Thesis for Master of Science, 2003.
[64]M. R. Krames, Shchekin O. B., Mueller-Mach R., Mueller G. O., Zhou L., Harbers G., Craford M. G., “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting, IEEE J. Display Technol., vol. 3, no. 2, pp. 160-175, 2007.
[65]Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, “Increasing the Extraction Efficiency of AlGaInP LEDs via n-Side Surface Roughening, IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2289-2291, 2005.
[66]Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency, Mater. Sci. Eng. B, vol. 138, pp. 157-160, 2007.
[67]L. J. Yan, J. K. Sheu, W. C. Wen, T. F. Liao, M. J. Tsai, and C. S. Chang, “Improved Light Extraction Efficiency in AlGaInP Light-Emitting Diodes by Applying a Periodic Texture on the Surface, IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1724-1726, Oct. 15, 2008.
[68]S. K. Kim. H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. H. Lee, and H. G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes, Appl. Phys. Lett., vol. 94, p. 101102, 2009.
[69]C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved Extraction Efficiency of Light-Emitting Diodes by Modifying Surface Roughness With Anodic Aluminum Oxide Film, IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 428-430, Mar. 2008.
[70]J. J. Chen, Y. K. Su, C. L. Lin, and C. C. Kao, “Light Output Improvement of AlGaInP-Based LEDs With Nano-Mesh ZnO Layers by Nanosphere Lithography, IEEE Photon. Technol. Lett., vol. 22, no. 6, pp. 383-385, Mar. 2010.
[71]Y. C. Lee, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Enhancing the light extraction of (AlxGa1-x)0.5In0.5P-based light-emitting diode fabricated via geometric sapphire shaping, IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 369-371, Mar. 2008.
[72]Y. C. Lee, H. C. Kuo, C. E. Lee, T. C. Lu, and S. C. Wang, “High-Performance (AlxGa1-x)0.5In0.5P-Based Flip-Chip Light-Emitting Diode With a Geometric Sapphire Shaping Structure, IEEE Photon. Technol. Lett., vol. 20, no. 23, pp.1950-1952, Dec. 2008.
[73]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
[74]C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. K. Kuo, S. J. Chang, and Y. K. Su, “Enhanced output power in GN-based LEDs with naturally textured surface grown by MOCVD, IEEE Electron Device Lett., vol. 26, pp. 464-466, 2005.
[75]W. C. Peng and Y. S. Wu, ‘Enhanced Light Output in Double Roughened GaN Light-Emitting Diodes via Various Texturing Treatments of Undoped-GaN Layer, Jpn. J. Appl. Phys., Part 1, vol. 45, pp. 7709-7712, 2006.
[76]J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes, Appl. Phys. Lett., vol. 85, pp. 142-144, 2004.
[77]J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures, Appl. Phys. Lett., vol. 84, pp. 3885-3887, 2004.
[78]C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls, IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 750-752, Mar., 2004.
[79]C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced Light Output in Nitride-Based Light-Emitting Diodes by Roughening the Mesa Sidewall, IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2038-2040, Oct. 2005.
[80]C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light–Output Enhancement in a Nitride-Based Light-Emitting Diode With 22° Undercut Sidewalls, IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 19-21, Jan. 2005.
[81]C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides, IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2517-2519, Dec. 2006.
[82]D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-Based LEDs With Phosphoric Acid Etched Undercut Sidewalls, IEEE Photon. Technol. Lett., vol. 21, no. 8, pp. 510-512, Apr. 2009.
[83]C. W. Kuo, Y. C. Lee, Y. K. Fu, C. H. Tsai, M. L. Wu, G. C. Chi, C. H. Kuo, and C. J. Tun, “Optical Simulation and Fabrication of Nitride-Based LEDs With the Inverted Pyramid Sidewalls, IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1264-1268, 2009.
[84]C. C. Lin and C. T. Lee, “Enhanced Light Extraction Mechanism of GaN-Based Light-Emitting Diodes Using Top Surface and Side-Wall Nanorod Arrays, IEEE Photon. Technol. Lett., vol. 22, no. 15, pp. 1132-1134, Aug. 2010.
[85]H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography, Nanotechnology, vol. 17, pp. 2998-3001, 2006.
[86]L. C. Peng, W. C. Lai, M. N. Chang, T. H. Hsueh, S. C. Shei, and J. K. Sheu, “III-Nitride-Based Light-Emitting Diodes With GaN Micropillars Around Mesa and Patterned Substrate, IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 140-144, Jan. 2010.
[87]Y. J. Liu, C. H. Yen, K. H. Yu, T. P. Chen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a Low-Damage GaN-Based Light-Emitting Diode Using a KOH-Treated Wet-Etching Approach, Jpn. J. Appl. Phys., vol. 48, pp. 082104-1–082104-6, 2009.
[88]C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface, J. Appl. Phys., vol. 93, no. 11, pp. 9383-9385, 2003.
[89]J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface, Appl. Phys. Lett., vol. 88, p. 113505, 2006.
[90]M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal, Appl. Phys. Lett., vol. 92, p. 251110, 2008.
[91]D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, “A study of transparent contact to vertical GaN-based light-emitting diodes, J. Appl. Phys., vol. 98, p. 053102, 2005.
[92]Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang, S. C. Shei, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs, J. Cryst. Growth, vol. 261, pp. 466-470, 2004.
[93]C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang, and C. T. Kuo, “Luminance Enhancement of Flip-Chip Light-Emitting Diodes by Geometric Sapphire Shaping Structure, IEEE Photon. Technol. Lett., vol. 20, no. 3, pp. 184-186, 2008.
[94]Reiner Windisch, Barun Dutta, Maarten Kuijk, Alexander Knobloch, Stefan Meinlschmidt, Stefan Schoberth, Peter Kiesel, Gustaaf Borghs, Gottfried H. Döhler, and Paul Heremans, “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography, IEEE Trans. Electron Devices, vol. 47, no. 7, pp. 1492-1498, Jul. 2000.
[95]S. J. Chang, W. S. Chen, S. C. Shei, C. F. Shen, T. K. Ko, J. M. Tsai, W. C. Lai, J. K. Sheu, A. J. Lin, and S. C. Hung, “GaN-Based Power Flip-Chip LEDs With Cu Submount, IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1287-1291, Jul./Aug. 2009.
[96]B. S. Cheng, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Power Enhancement of GaN-Based Flip-Chip Light-Emitting Diodes with Triple Roughened Surfaces, J. Appl. Phys., vol. 48, p. 04C115, 2009.
[97]C. H. Kuo, C. M. Chen, C. W. Kuo, C. J. Tun, C. J. Pan, B. J. Pong, and G. C. Chi, “Improvement of near-ultraviolet nitride-based light emitting diodes with mesh indium tin oxide contact layers, Appl. Phys. Lett., vol. 89, p. 201104, 2006.
[98]C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in External Quantum Efficiency of InGaN-Based LEDs by Micro-Textured Surface with Different Geometric Patterns, J. Electrochem. Soc., vol. 159, no. 2, pp. H151-H156, 2012.
[99]C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN, Appl. Phys. Lett., vol. 90, p. 142115, 2007.
[100]M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of External Extraction Efficiency in GaN-Based LEDs by SiO2 Nanosphere Lithography, IEEE Electron. Device Lett., vol. 29, no. 7, pp. 658-660, Jul. 2008.
[101]T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography, Appl. Phys. Lett., vol. 91, p. 171114, 2007.
[102]C. H. Kuo and H. C. Feng, “Nitride-Based Near-Ultraviolet Mesh MQW Light-Emitting Diodes, IEEE Photon. Technol. Lett., vol. 19, no. 23, pp. 1901-1903, Dec. 1, 2007.
[103]H. G. Kim, T. V. Cuong, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, and C. H. Hong, “Improved GaN-Based LED Light Extraction Efficiencies via Selective MOCVD Using Peripheral Microhole Arrays, IEEE Photon. Technol. Lett., vol. 20, no. 15, pp. 1284-1286, Aug. 2008.
[104]I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0(x(0.4) films grown on sapphire substrate by MOVPE, J. Cryst. Growth, vol. 98, pp. 209-219, 1989.
[105]S. Nakamura, “GaN growth using GaN buffer layer, Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
[106]K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, and K. Oki, “Growth mechanism of GaN grown on sapphire with AlN buffer layer by MOVPE, J. Cryst. Growth, vol. 115, pp. 628-633, 1991.
[107]F. A. Ponce, “Defects and interfaces in GaN epitaxy, Mater. Res. Soc. Bull., vol. 22, pp. 51-57, 1997.
[108]H. Marchand, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Atomic force microscopy observation of threading dislocation density reduction in lateral epitaxial overgrowth of gallium nitride by MOCVD, MRS Internet J. Nitride Semicond. Res., vol. 3, pp. 1-7, 1998.
[109]K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO), J. Cryst. Growth, vol. 221, pp. 316-326, 2000.
[110]C. H. Ko, Y. K. Su, S. J. Chang, T. Y. Tsai, T. M. Kuan, W. H. Lan, J. C. Lin, “Two-step epitaxial lateral overgrowth of GaN, Materials Chemistry and Physics, vol. 82, pp. 55-60, 2003.
[111]T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures, Appl. Phys. Lett., vol. 71, pp. 2472-2474, 1997.
[112]X. Zhang, R. R. Li, P. D. Dapkus, and D. H. Rich, “Direct lateral epitaxy overgrowth of GaN on sapphire substrates based on a sparse GaN nucleation technique, Appl. Phys. Lett., vol. 77, pp. 2213-2215, 2000.
[113]H. S. Cheong, M. K. Yoo, H. G. Kim, S. J. Bae, C. S. Kim, C. H. Hong, J. H. Baek, H. J. Kim, Y. M. Yu , and H. K. Cho, “Direct heteroepitaxial lateral overgrowth of GaN on stripe-patterned sapphire substrates with very thin SiO2 masks, phys. stat. sol. (b), vol. 241, pp. 2763-2766, 2004.
[114]J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates, IEEE Photon. Technol. Lett., vol. 20, pp. 1193-1195, 2008.
[115]C. C. Kao, Y. K. Su, W. L. Li, and J. J. Chen, “The Aspect Ratio Effects on the Performances of GaN-Based Light-Emitting Diodes with Nano-Patterned Sapphire Substrates, Appl. Phys. Lett., vol. 97, pp. 023111-1–023111-3, 2010.
[116]H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and S. W. S. Chi, “Effects of Lens Shape on GaN Grown on Microlens Patterned Sapphire Substrates by Metallorganic Chemical Vapor Deposition, J. Electrochem. Soc., vol. 157, pp. H304-H307, 2010.
[117]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale, J. Appl. Phys., vol. 103, pp. 014314-1–014314-5, 2008.
[118]C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template, Appl. Phys. Lett., vol. 93, pp. 081108-1–081108-3, 2008.
[119]Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays, Appl. Phys. Lett., vol. 91, pp. 221107-1–221107-3, 2007.
[120]Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures, Opt. Express, vol. 91, pp. 13747-13757, 2009.
[121]J. J. Wierer, A. David and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency, Nature Photon., vol. 3, pp. 163-169, 2009.
[122]D. H. Jang, J. I. Shim, and D. S. Shin, “Enhancement of Light Extraction Efficiency Using Lozenge-Shaped GaN-Based Light-Emitting Diodes, IEEE Photon. Technol. Lett., vol. 21, pp. 760-762, 2008.
[123]H. C. Lin, R. S. Lin, J. I. Chyi, and C. M. Lee, “Light Output Enhancement of InGaN Light-Emitting Diodes Grown on Masklessly Etched Sapphire Substrates, IEEE Photon. Technol. Lett., vol. 20, no. 19, pp. 1621-1623, Oct. 1, 2008.
[124]P. Torma, O. Svensk, M. Ali, S. Suihkonen, M. Sopanen, M. Odnoblyudov, V. Bougrov, “Maskless roughening of sapphire substrates for enhanced light extraction of nitride based blue LEDs, Solid-State Electron., vol. 53, pp. 166-169, 2009.
[125]Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates, J. Cryst. Growth, vol. 331, pp. 2973-2976, 2009.
[126]C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate, Appl. Phys. Lett., vol. 95, pp. 011110, 2009.
[127]C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, T. K. Ko, and C. F. Shen, “GaN-Based LEDs Output Power Improved by Textured GaN/Sapphire Interface Using In Situ SiH4 Treatment Process During Epitaxial Growth, IEEE J. Sel. Topics Quantum Electron., vol. 15, pp. 1275-1280, 2009.
[128]K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface Modification on Wet-Etched Patterned Sapphire Substrates Using Plasma Treatments for Improved GaN Crystal Quality and LED Performance, J. Electrochem. Soc., vol. 158, no. 10, pp. H988-H993, Aug. 2011.
[129]H. W. Huang, J. K. Huang, C. H. Lin, K. Y. Lee, H. W. Hsu, C. C. Yu, H. C. Kuo, “Efficiency Improvement of GaN-Based LEDs With a SiO2 Nanorod Array and a Patterned Sapphire Substrate, IEEE Electron Device Lett., vol. 31, no. 6, pp. 582-584, Jun. 2010.
[130]K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, “Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes, Appl. Phys. Lett., vol. 92, no. 24, p. 243126, 2008.
[131]T. Y. Tang, W. Y. Shiao, C. H. Lin, K. C. Shen, J. J. Huang, S. Y. Ting, T. C. Liu, C. C. Yang, C. L. Yao, J. H. Yeh, T. C. Hsu, W. C. Chen, H. C. Hsu, and L. C. Chen, “Coalescence overgrowth of GaN nanocolumns on sapphire with patterned metal organic vapor phase epitaxy, J. Appl. Phys., vol. 105, p. 023501, 2009.
[132]K. Ueda, Y. Tsuchida, N. Hagura, F. Iskandar, K. Okuyama, and Y. Endo, “High performance of GaN thin films grown on sapphire substrates coated with a silica-submicron-sphere monolayer film, Appl. Phys. Lett., vol. 92, p. 101101, 2008.
[133]S. M. Kim, T. Y. Park, S. J. Park, S. J. Lee, J. H. Baek, Y. C. Park, and G. Y. Jung, “Nanopatterned aluminum nitride template for high efficiency light-emitting diodes, Opt. Express, vol. 17, no. 17, pp. 14791-14799, Aug. 2009.
[134]T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong, K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang, “GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al2O3 powder, Appl. Phys. Lett., vol. 94, p. 161107, 2009.
[135]T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, S. J. Bae, S. K. Shim, S. J. Son, J. S. Lee, K. H. Shim, K. Y. Lim, and G. M. Yang, “Enhancement of Light Extraction from GaN-Based Light-Emitting Diodes by Coating Surface with Al2O3 Powder, Jpn. J. Appl. Phys., vol. 48, p. 021002, 2009.
[136]K. C. Huang, W. H. Lan, K. F. Huang, J. C. Lin, Y. C. Cheng, W. J. Lin, S. M. Pan, “High light output intensity of titanium dioxide textured light-emitting diodes, Solid-State Electron., vol. 52, pp. 1154-1156, 2008.
[137]D. S. Liu, T. W. Lin, B. W. Huang, F. S. Juang, P. H. Lei, and C. Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures, Appl. Phys. Lett., vol. 94, pp. 143502-1–143502-3, 2009.
[138]J. C. Zhang, D. G. Zhao, J. F. Wang, Y. T. Wang, J. Chen, J. P. Liu, and H. Yang, “The influence of AlN buffer layer thickness on the properties of GaN epilayer, J. Cryst. Growth, vol. 268, pp. 24-29, 2004.
[139]G. J. Sheu, F. S. Hwu, J. C. Chen, J. K. Sheu, and W. C. Lai, “Effect of the Electrode Pattern on Current Spreading and Driving Voltage in a GaN/Sapphire LED Chip, J. Electrochem. Soc., vol. 155, no. 10, pp. H836-H840, 2008.
[140]S. W. Lee, T. Minegishi, W. H. Lee, H. Goto, H. J. Lee, S. H. Lee, H. J. Lee, J. S. Ha, T. Goto, T. Hanada, M. W. Cho, and T. Yao, “Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique, Appl. Phys. Lett., vol. 90, pp. 061907-1–61907-3, 2007.
[141]Nola Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for Solid State Lighting Applications, Proc. SPIE, vol. 6337, pp. 63370Z-1–63370Z-6, 2006.
[142]D. J. Rogers, F. H. Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN, Appl. Phys. Lett., vol. 91, pp. 071120-1–071120-3, 2007.
[143]L. C. Chen, J. B. Huang, P. J. Cheng, and L. S. Hong, “InGaN blue light-emitting diodes with ZnO nucleation layers prepared by the sol-gel method, Semicond. Sci. Technol., vol. 22, pp. 1178-1182, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊