跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡弘琦
研究生(外文):Hung-GciCai
論文名稱:以脈衝電鍍製備CuInSe2薄膜太陽能電池之研究
論文名稱(外文):The study on fabrication of CuInSe2 Thin Film Solar Cells by pulse electrodeposition method
指導教授:洪茂峰洪茂峰引用關係
指導教授(外文):Mau-Phon Houng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:太陽能電池脈衝電鍍二硒化銅銦
外文關鍵詞:Solar cellpulse electrodepositionCuInSe2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學的方式來成長太陽能電池的主吸收層二硒化銅銦(CuInSe2,CIS),電化學的優點在製程簡單、成本低且適合大面積生產,缺點為薄膜組成難控制和均勻性問題。電鍍可分為直流電鍍和脈衝電鍍兩種,脈衝電鍍的成核較直流電鍍慢,所鍍出來的薄膜較緻密且平整。在電解液添加錯合劑十二烷基硫酸鈉(sodium dodecyl sulfate ,SDS)利用循環伏安法可以觀察到銦的還原電位往正的方向偏移可提高薄膜的銦含量,且SDS可增加薄膜的平整度與附著性。採用脈衝電鍍去成長CuInSe2利用SEM、EDS分別去分析薄膜的表面形貌與成分比例、拉曼光譜分析有無二次相產生、XRD分析薄膜的結構與晶粒大小。
作為一個良好的薄膜太陽能電池吸收層理想厚度約為1μm。吾人調變脈衝參數為Von 、Voff電壓、duty cycle Θ(Θ=t_on/(t_on+t_off ) x100%)與錯合劑SDS濃度。綜合起來得到最佳CuInSe2條件,經由硒化後,將硫化鎘沉積於CuInSe2上,藉由IV curve去探討元件特性。
In this study, the CuInSe2 thin films were fabricated by electrodeposition. Advantages of electrodeposition are low equipment cost , high deposition rate, negligible waste of chemicals and possibility to deposit over large area. The disadvantages of the film composition are difficult to control and keep uniformity.
The electrodeposition of CuInSe2 thin film can be divided into DC electrodeposition and pulse electrodeposition. According to the nucleation rate of pulse electrodeposition is slower than DC electrodeposition, the CuInSe2 thin film fabricated by pulse electrodeposition is dense and smooth. When we add Sodium dodecyl sulfate (SDS) additive into electrolyte, the reduction potential of indium could shift to positive potential by cyclic voltammograms measurement. This result indicate that the indium content is increased by reacting with SDS to form complex compound. SDS additive also could increase the adhesion and uniform of CuInSe2 thin film.
The surface morphologies and chemical compositions of the electrodeposited CIS thin film were observed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The qualities 、crystalline properties and second phase of the electrodeposited CIS thin film were analysed by X-ray diffraction (XRD) and Roman spectroscopy, respectively.
The idea thickness of absorb layer of thin film solar cell is approximate to 1um. In this study, the optimal CIS thin film is attained by adjusting experiment parameters such as duty cycle, Von and Voff of pulse electrodeposition, and the concentration of SDS additive. Finally, the optimal CIS thin film is selenization by furnace in vacuum and subsequently the CdS is deposited on CIS thin film by CBD method. The properties of CIS thin film solar cell is studied by I-V curve.
摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 X
表目錄 XII
第一章緒論 1
1-1研究背景 1
1-2 研究動機 5
第二章理論基礎與文獻探討 8
2-1太陽能光譜介紹 8
2-2太陽能電池工作原理[14] 10
2-3基本電鍍原理介紹 16
2-3-1電極介紹 16
2-3-2脈衝電鍍[15-24] 17
2-4緩衝層介紹 19
2-5硫化鎘薄膜材料 20
2-6化學水浴法 21
2-6-1 化學水浴沉積法介紹 21
2-6-2 CdS薄膜材料的製備 23
2-6-3 化學浴沉積法基板放置 24
第三章實驗方法與量測 26
3-1實驗流程 26
3-2實驗步驟 28
3-3實驗藥品 30
3-3-1 沉積CdS藥品 30
3-3-2 CuInSe2藥品 30
3-4實驗參數 31
3-4-1 CuInSe2薄膜調變參數 31
3-4-2 CdS參數 31
3-4-3 鍍膜參數(ITO) 31
3-5薄膜量測分析與儀器 32
3-5-1 X光繞射儀 (X-Ray Diffraction,XRD) [28] 32
3-5-2 高解析場發射掃描式電子顯微鏡 32
3-5-3 拉曼光譜儀(Raman Spectrometer)[30] 33
3-5-4 紫外光-可見光光譜儀 35
3-5-5 濺鍍系統(Sputtering System) 37
3-5-6 熱阻式蒸鍍機 38
第四章 結果與討論 41
4-1薄膜電鍍參數對二硒化銅銦薄膜探討 41
4-1-1改變銅濃度對沉積薄膜組成的影響 41
4-1-2 Von電壓對二硒化銅銦薄膜探討 44
4-1-3改變銦濃度對沉積薄膜組成的影響 47
4-1-4 Voff電壓對二硒化銅銦薄膜探討 50
4-1-5改變硒濃度對沉積薄膜組成的影響 55
4-1-6 theta對二硒化銅銦薄膜探討 58
4-1-7改變Tp脈衝秒數對沉積薄膜組成的影響 61
4-1-8改變SDS濃度對沉積薄膜組成的影響 67
4-2 CuInSe2 太陽能電池元件製作 73
4-2-1元件問題 77
4-2-2硒化溫度調變對元件影響 78
4-2-3硒化時間調變對元件影響 83
第五章 結論 88
參考文獻 89

[1] D.Lidgate, EngineeringScienceandEducationJournal, Vol.1,No.5, pp.221-227,(1992).
[2] 楊德仁,顏怡文,太陽能電池材料,五南出版股份有限公司(2008) ,pp.119。
[3 ] L.L. Kazmerski, F.R. White, G. K. Morgan , Applied Physics Letters, Vol.29,No.4, pp.268-270,(1976).
[4] K.W. Mitchell , H.I. Liu, Photovoltaic Specialists Conference, (1988).
[5] M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, R. Noufi, Progress in Photovoltaics: Research and Applications, Vol.2 ,No.4, pp.287-292,( 1994).
[6] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Progress in Photovoltaics: Research and Applications, Vol.19, No.7,pp. 894-897,(2011).
[7] 粘金重,工業技術研究院辨識與安全科技中心。
[8] H. J. Moller, Semiconductor For Solar Cell, Landon, Artech House, (1993).
[9] B.Schumann, C.Georgi, A.Tempel, G.Kühn, Thin Solid Films (1978), Vol.52, pp.45-52.
[10] A. Ihlal , K. Bouabid, D. Soubane, M. Nya, O. Ait-Taleb-Ali, Y. Amira, A. Outzourhit, G. Nouet, Thin Solid Films (2007), Vol.515, pp.5852-5856.
[11] S. P. Gringle, A. H. Clark, S. Rezaie-Serej, E. Falconer, J. McNeliy, Journal of Applied Physics (1980) ,Vol.52, pp.5464.
[12] X. Mathew, J. P. Enriquez, P.J. Sebastian, J.C. McClure, V.P. Singh, Solar Energy Materials & Solar Cells (2000), Vol.63, 355-365.
[13] S.O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall published, pp.255-273, 2001.
[14] 楊德仁,顏怡文,太陽能電池材料,五南出版股份有限公司(2008) ,pp.86-88。
[15] M. BOUMERZOUG , Lf. H. DAO, JOURNAL OF MATERIALS SCIENCE : MATERIALS IN ELECTRONICS 1, Vol.1,No.3, pp. 123-128,(1990).
[16] T. Edamura and J. Muto, JOURNAL OF MATERIALS SCIENCE : MATERIALS IN ELECTRONICS, Vol.5, No.5, 275-279,(1994).
[17]S. Endo , Y. Nagahori and S. Nomura, Japanese journal of applied Physics, Vol.35, pp. L1101-L1103,(1996).
[18] Y.P. Fu, R.W. You, K.K. Lew, Journal of The Electrochemical Society, Vol.156,No.12, D553-D557,(2009).
[19] F. Kang, J. Ao, G. Sun, Q. He, Y. Sun, Journal of Alloys and Compounds, Vol.478, pp.L25–L27,(2009).
[20] J. Yang, Z. Jin, C. Li, W. Wang, Y. Chai, Electrochemistry Communications, Vol.11, pp.711–714,(2009).
[21] A. Palacios-Padrós, F. Caballero-Briones, F. Sanz, Electrochemistry Communications, Vol.12, pp.1025–1029,(2010).
[22] F. Caballero-Briones, A. Palacios-Padrós, F. Sanz, Electrochimica Acta, Vol.56, pp.9556–9567, (2011).
[23] M.H. Valdés, M. Vázquez, Electrochimica Acta, Vol.56, pp.6866–6873, (2011).
[24] S.Y. Hu, W. H. Lee, S.C. Chang, Y.L. Cheng, Y.L. Wang, Journal of The Electrochemical Society, Vol.158,No.5, B557-B561,(2011).
[25] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, Progress in Photovoltaics: Research and Applications ,Vol.16, No.3, pp. 235-239, (2008).
[26] P.K. Nair, M. T. S. N., V.M. Garcia, O.L. Arenas, Y. Pena,A. Castillo, I.T. Ayala,O. Gomezdaza, A. Sanchez, J. Campos and R. S. H. Hu, Solar Energy Materials and Solar Cells 52, pp. 313-344, (1998).
[27] 詹岳霖,硒化銅銦鎵薄膜太陽能電池中緩衝層的製備與特性分析,國立東華大學光電工程研究所碩士論文。
[28] 林麗娟, X光繞射原理及其運用, 工業材料, 86, 101(1994)。
[29] H. M. Rietveld, Acta Crystallogr , Vol.22, (1967).
[30] 汪建民,材料分析,1st ed.(中國材料科學學會,新竹,1998)
[31] M.A. Martinez, J. Herrero, M.T. Gutierrez, Sol. Energy Mater. Sol. Cells,Vol. 45, (1997).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top