跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王培任
研究生(外文):Pei-RenWang
論文名稱:高效率氮化鎵與磷化鋁鎵銦系列發光二極體之研製
論文名稱(外文):Investigation and Fabrication of High Performance GaN- and AlGaInP-based Light Emitting Diodes
指導教授:王水進
指導教授(外文):Shui-Jinn Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:100
中文關鍵詞:發光二極體表面出光基板工程區塊雷射剝離電流阻障層奈米管抗反射
外文關鍵詞:Light emitting diodesMetallic-substrate technologyPattern laser lift-offSurface roughening technologyNanotubeCurrent blocking layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在開發適用於氮化鎵系列發光二極體(GaN-based LEDs)以及磷化鋁鎵銦系列發光二極體(AlGaInP-based LEDs)之金屬基板及表面出光技術。本論文關於金屬基板工程部分的研究內容,首先針對商業化以藍寶石基板為主的氮化鎵系列發光二極體(Regular LEDs),提出結合網印錫系列金屬基板及區塊雷射剝離(Patterned laser lift-off)技術置換藍寶石基板,以解決絕緣的藍寶石基板因散熱不佳、僅已橫向傳導所帶來電流叢聚效應(Current crowding effect)以及兩電極在同一面造成較小發光面積等問題,進而提升光輸出功率以及發光效率,並且克服了金屬基板切割時的剪應力及金屬噴濺所造成元件漏電問題。本論文亦提出一種利用異方性導電膠作為基板鍵合製程技術,將AlGaInP-LEDs黏合轉置於可撓曲式之基板。於面對持續改善發光二極體光析出效率以進行照明應用,本論文提出了改善GaN-based LEDs出光效率之新穎表面出光技術,包括利用二氧化碳雷射蝕刻藍寶石基板表面技術、感應耦合電漿蝕刻氮化鎵表面技術、二氧化矽奈米管表面粗化技術。茲就本論文所提出之製程技術重點依序敘述如下。首先,利用結合網印錫系列金屬基板及區塊雷射剝離(Patterned laser lift-off)技術置換GaN-based LEDs之藍寶石基板。此方法所製備之垂直結構發光二極體(VLED)相較於Regular LED,操作在350 (700) mA電流下,其光輸出效率增加55 (76)%,且順向電壓亦降低0.38 (0.87) V。
其次,利用異方性導電膠作為基板鍵合製程的介質,將AlGaInP LEDs黏合轉置於可撓曲式之基板。本製程技術所製備之AlGaInP LEDs陣列,於晶粒轉置前後的光電特性,並沒有顯著的改變,並且在撓曲半徑小於1.5 mm的操作下,元件的光電特性並不會有顯著的衰減。
之後,本研究亦針對表面工程技術,提出利用CO2 laser粗化覆晶結構發光二極體(FC-LEDs)之藍寶石基板表面,此技術不僅能簡易並且快速粗化藍寶石基板表面,而且此技術所製備之LEDs相較於傳統FC-LEDs和Regular LEDs,其光輸出效率增加15%與40.2%。
接著,利用兩階段ICP非等向性蝕刻n-GaN表面,結合電流阻障層以及具漸變線寬電極圖案設計。提出一個能有效改善電流擴散與增進光析出的VLED結構。此方法所製備之VLED相較於傳統的VLED,操作在350 (750) mA電流下,其光輸出效率增加33.9 (49.4)%。
最後,本研究探討了SiO2奈米管表面粗化技術,於VLED以及抗反射層製備上的應用,相較於傳統ZnO奈米線表面粗化技術,本研究所提出之SiO2奈米管結構,在可見光波段範圍內,擁有較好的抗反射特性,以及穿透率提升了22%。
本論文所開發適用於GaN-based LEDs以及AlGaInP-LEDs之金屬基板及表面出光技術。不僅能降低傳統金屬基板的製程難度,更能有效提升LED之表面光析出效率,可加速LED晶粒於固態照明之及早應用。
The dissertation aims at the development of metallic-substrate and surface light extraction improvement technology for the GaN- and AlGaInP-based light emitting diodes (LEDs). In respect of research on metallic-substrate technology, to have a low forward operating voltage and high optical output power of GaN-based LEDs. Through the use of Sn-based solder screen printing with pattern laser lift-off techniques to fabricate the vertical-structured GaN-based LEDs. As compared to conventional lateral GaN-based LEDs with sapphire substrate (abbreviated as regular LEDs), the proposed vertical-structure GaN-based LEDs (GaN-VLEDs) have good heat dissipation, shorter conduction path, less current crowding effect, and larger effective area through a conducting substrate. Besides, we also develop the fabrication process of AlGaInP LED arrays on flexible substrate using ACF as a bonding agent. However, the light-extraction efficiency of LEDs must still be improved for general lighting. As a result, the dissertation presents the novel fabrications to improve the light extraction efficiency of GaN-VLEDs, including the sapphire surface roughening technology using CO2 laser irradiation, 2-step inductively coupled plasma etching on the n-GaN, and surface roughening technology using SiO2 nanotube (SiO2 NT). Several important results are obtained and summarized as follows:
At first, through the use of Sn-based solder screen printing with laser lift-off techniques, a simple and fast dicing-free substrate technology for the fabrication of VLEDs was proposed and demonstrated. Based on our experimental results, the proposed VLED with an effective emission area of 1000 × 1000 m2 exhibited a VF reduction of 0.38 (0.87) V at 350 (700) mA as compared with that of regular LEDs. Furthermore, the Sn-based metal substrate alleviated the heat accumulation, reflected in the successive superiority in Lop of VLEDs under high injection current. It is seen that VLEDs showed an enhancement in Lop of 55 (76)% at 350 (700) mA as compared with regular LEDs.
Next, the fabrication process of AlGaInP LED arrays on flexible substrate using ACF as a bonding agent was proposed. Through the use of an optimized bonding condition (150oC for 120 s) and SU8-3 thick photoresist for electrical isolation between X- and Y-metal lines and planization for a better X-metal line deposition, the prepared samples show a good stability (and durability) in both the electrical and optical performance with degradation 1.5%. Especially noteworthy are the results of the bending test with a BCR of as small as 1.5 mm, no noticeable difference in I-V and Lop-I characteristics were found.
Then, through the use of CO2 laser irradiation, a fast surface roughening technology was proposed to enhance the light extraction of GaN-based flip-chip LEDs (FC-LEDs). The processing time to roughen a 2” wafer was within 5 min. As compared with conventional top-emitting regular LEDs and FC-LEDs, the proposed laser-roughening LEDs exhibited a 40.2% and 15% enhancement in Lop and comparably good I-V characteristics.
Furthermore, the use of 2-step mesa etching on the n-GaN, a localized Cr/p-GaN current blocking layer (CBL) contact structure, and a novel gradated line-width electrode design to improve Lop and VF of VLEDs has been demonstrated. As compared to regular VLEDs, the proposed VLEDs have been shown having an enhancement in Lop by 33.9% and 49.4% at 350 mA and 750 mA, respectively.
Finally, the surface roughening technology using SiO2 NT arrays to improve light extraction of VLEDs is proposed. The effectiveness of the SiO2 NT in affording surface roughening, light guiding, and significantly enhancement of the light extraction due to the reducing of Fresnel reflection are investigated.
It is expected that the proposed GaN-based LEDs and AlGaInP-LEDs would be very advantageous for the applications of high power and cost effective solid-state lighting.
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgements VI
Contents VII
Table Captions XI
Figure Captions XII
Chapter 1 Introduction
1-1 Overview of GaN-based LEDs 1
1-2 Overview of AlGaInP-LEDs 5
1-3 Thesis organization 6
Chapter 2 Challenges for improving light extraction efficiency of GaN-based LEDs
2-1 Issues of external quantum efficiency in LEDs 8
2-2 Substrate technology 11
2-2.1 Metal electroplating 12
2-2.2 Wafer bonding 14
2-2.3 Laser lift-off 17
2-3 Surface technology 20
Chapter 3 A Screen Printed Sn-Based Metal Substrate Technology for the Fabrication of Vertical Structured GaN-Based Light-Emitting Diodes
3-1 Introduction 24
3-2 Properties of Sn-based solders 25
3-3 Device fabrication 26
3-4 Results and discussion 29
3-4.1 Surface morphology 29
3-4.2 Electrical and optical characteristics 30
3-5 Summary 33
Chapter 4 Fabrication and Bending Test of AlGaInP LED Arrays on Flexible Polyimide Substrate
4-1 Introduction 34
4-2 Device fabrication 35
4-3 Results and discussion 37
4-3.1 Surface morphology 37
4-3.2 Electrical and optical characteristics 39
4-4 Summary 44
Chapter 5 Sapphire Substrate Surface Roughening Technology Using CO2 Laser for Enhancing Light Extraction of GaN-Based Flip-Chip Light-Emitting Diodes
5-1 Introduction 46
5-2 Device fabrication 47
5-3 Results and discussion 49
5-3.1 Ray-Tracing simulation 49
5-3.2 SEM analysis 50
5-3.3 AFM analysis 51
5-3.4 Electrical and optical characteristics 52
5-4 Summary 55
Chapter 6 Improved Current Spreading and Blocking Designs for Vertical-structure GaN-based LEDs
6-1 Introduction 56
6-2 Device fabrication 57
6-3 Results and discussion 59
6-3.1 Surface morphology 59
6-3.2 Current density distribution simulation 59
6-3.3 P-ohmic contact characteristics 60
6-3.4 Annealed-Pt/p-GaN and Cr/p-GaN contact analysis 61
6-3.5 Electrical and optical characteristics 62
6-4 Summary 64
Chapter 7 Improved Light Extraction of Vertical-structure GaN-based Light-Emitting Diodes with an Antireflection Layer of SiO2 Nanotube Arrays
7-1 Introduction 66
7-2 Device fabrication 69
7-3 Results and discussion 71
7-3.1 SEM analysis 71
7-3.2 EDS analysis 73
7-3.3 TEM analysis 74
7-3.4 Optical characteristics 76
7-4 Summary 78
Chapter 8 Conclusions and Suggestions for Future Study
8-1 Conclusions 80
8-2 Suggestions for Future Study 82
References 84
Publication list 97
Vita 101
[1]E. F. Schubert, “Light-Emitting Diodes, Cambridge University, 2003.
[2]H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, and J. S. Lee, “Light extraction enhancement from nanoimprinted photonic crystal GaN-based blue lightemitting diodes, Opt. Express, vol. 14, p. 8654, 2006.
[3]X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios, IEEE Photonics J., vol. 3, p. 489, 2011.
[4]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett., vol. 84, p. 855, 2004.
[5]T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, “Cone‐shaped surface GaN‐based light‐emitting diodes, Phys. Stat. Sol. C, vol. 2, p. 2836, 2005.
[6]H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, “Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes, Solid-State Electron., vol. 52, p. 1193, 2008.
[7]C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface, IEEE Photon. Technol. Lett., vol. 20, p. 803, 2008.
[8]H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes, IEEE Photon. Technol. Lett., vol. 20, p. 2096, 2008.
[9]S. Nakamura, S. Pearton, and G. Fasol: The Blue Laser Diode (Springer, Berlin, 2000) 2nd ed., p.100.
[10]S. L. Chen, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Lee, and B. W. Liu, “Fabrication of Dicing-Free Vertical-Structured High-Power GaN-Based Light-Emitting Diodes With Selective Nickel Electroplating and Patterned Laser Liftoff Techniques, IEEE Photonics Technol. Lett., vol. 19, p. 351, 2007.
[11]H. Y. Kuo, S. J. Wang, P. R. Wang, K. M. Uang, T. M. Chen, and H. Kuan, “A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes, Appl. Phys. Lett., vol. 92, p. 021105, 2008.
[12]W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Hung, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques, IEEE Photonics Technol. Lett., vol. 17, p. 1809, 2007.
[13]B. Consulting et al., “Solid-State Lighting Research and Development: Manufacturing Roadmap, Lighting Research and Development Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy, Sept. 2009.
[14]K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterosturcture visible lasers, Electron. Lett., vol. 21, p. 931, 1985.
[15]K. Itaya, M. Ishikawa, and Y. Uematsu, “636 nm room temperature cw operation by hetrobarrier blocking structure InGaAlP laser diodes, Electron. Lett., vol. 26, p. 839, 1990.
[16]K. H. Huang and T. P. Chen, “Light-emitting diode structure, U.S. Patent 5, 661, 742, 1997.
[17]M. Boroditsky and E. Yablonoyitch, “Light emitting diode extraction efficiency, Proc. SPIE, vol. 3002, p. 119, 1997.
[18]S. K. Kim, H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. H. Lee, and H. G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes, Appl. Phys. Lett., vol. 94, p. 10102, 2009.
[19]W. C. Peng, and Y. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding, Appl. Phys. Lett., vol. 84, p. 1842, 2004.
[20]Y. C. Lee, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Enhancing the Light Extraction of (AlxGa1 x)0:5In0:5P-Based Light-Emitting Diode Fabricated via Geometric Sapphire Shaping, IEEE Photon. Technol. Lett., vol. 20, p. 369, 2008.
[21]T. Y. Tsai, Y. J. Liu, C. H. Yen, and W. C. Liu, “On an AlGaInP Multiple Quantum Well Light Emitting Diode with a Thin Carbon-Doped GaP Contact Layer Structure, J. Electrochem. Soc., vol. 157, p. H459, 2010.
[22]S. C. Hsu, D. S. Wuu, C. Y. Lee, and R. H. Horng, “High-Efficiency 1-mm2 AlGaInP LEDs Sandwiched by ITO Omni-Directional Reflector and Current-Spreading Layer, IEEE Photon. Technol. Lett., vol. 17, p. 492, 2007.
[23]S. C. Hsu, D. S. Wuu, X. Zheng, and R. H. Horng, “Electron-Beam and Sputter-Deposited Indium–Tin Oxide Omnidirectional Reflectors for High-Power Wafer-Bonded AlGaInP Light-Emitting Diodes, J. Electrochem. Soc., vol. 156, p. H281, 2009.
[24]C. J. Humphreys, “Solid-State Lighting, MRS Bulletin, vol. 33, p. 459, 2008.
[25]S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates, Appl. Phys. Lett., vol. 42, p. 427, 1983.
[26]H. Amano, N. Sawaki, I. Akasaki, and Y. Touoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett., vol. 48, p. 353, 1986.
[27]H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J.A. Floro, E. Chason, and J. Figiel, Stress and Defect Control in GaN Using Low Temperature Interlayers, Jpn. J. Appl. Phys., vol. 37, p. L1540, 1998.
[28]B. Beaumont, Ph. Vennegures, and P. Gibart, “Epitaxial Lateral Overgrowth of GaN, Phys. Stat. Sol. (b), vol. 227, p. 1, 2001.
[29]R. F. Davis, T. Gehrke, K. J. Linthicum, P. Rajagopal, A. M. Roskowski, T. Zheleva, E. A. Preble, C. A. Zorman, M. Mehregany, U. Schwarz, J. Schuck, and R. Grober, Review of Pendeo-Epitaxial Growth and Characterization of Thin Films of GaN and AlGaN Alloys on 6H-SiC(0001) and Si(111) Substrates,“ MRS Internet Journal of Nitride Semiconductor Research, vol. 6, p. 1, 2001.
[30]C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, “Low-dislocation-density GaN from a single growth on a textured substrate, Appl. Phys. Lett., vol. 77, p. 3233, 2000.
[31]J. H. Son, J. U. Kin, Y. H. Song, B. J. Kim, C. J. Ryu, and J. L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection, Adv. Mater., vol. 24, p. 2259, 2012.
[32]W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off, Appl. Phys. Lett., vol. 77, p. 2822, 2000.
[33]S. J. Wang, K. M. Uang, S. L. Chen,Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes, Appl. Phys. Lett., vol. 87, p. 011111-1, 2005.
[34]R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography, Appl. Phys. Lett., vol. 86, p. 221101-1, 2005.
[35]W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates, Appl. Phys. Lett., vol. 72, p. 599, 1998.
[36]J. Jasinski, Z. Liliental-Weber, S. Estrada, and E. Hu, “Microstructure of GaAs/GaN interfaces produced by direct wafer fusion, Appl. Phys. Lett., vol. 81, p. 3152, 2002.
[37]W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, “Continuous-wave InGaN multiple-quantum-well laser diodes on Cupper substrates, Appl. Phys. Lett., vol. 78, p. 1198, 2001.
[38]Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon, IEEE Photonics Technol. Lett., vol. 14, p. 1400, 2002.
[39]W. S. Wong, M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, A. Salleo, and N. M. Johnson, “Continuous-wave InGaN laser diodes on copper and diamond substrates, J. Mater. Res., vol. 17, p. 890, 2002.
[40]C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, “Comparison of p-Side Down and p-Side Up GaN Light-Emitting Diodes Fabricated by Laser Lift-Off ,“ Jpn. J. Appl. Phys., vol. 42, p. L147, 2003.
[41]B. S. Tan, S. Yuan, and X. J. Kang, “Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate, Appl. Phys. Lett., vol. 84, p. 2757, 2004.
[42]A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, and C. Weisbuch, “Photonic crystal laser lift-off GaN light-emitting diodes, Appl. Phys. Lett., vol. 88, p. 133514-1, 2006.
[43]P. H. Chen, C. L. Lin, and C. Y. Liu, “Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diodes, Appl. Phys. Letts., vol. 90, p. 242106-1, 2007.
[44]D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, “Highlt efficient vertical laser-liftoff GaN-based light-emitting diodes formed by optimization of the cathode structure, Appl. Phys. Lett., vol. 86, p. 052108-1, 2005.
[45]M. Braunovic, “Fretting in nickel-coated aluminium conductors, Proceedings of the Thirty-Sixth IEEE Holm and the Fifteenth International Conference on Electrical Contacts, vol. 461, p. 461, 1990.
[46]M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films, Appl. Phys. Lett., vol. 69, p. 1749, 1996.
[47]D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate, IEEE Photonics Technol. Lett., vol. 18, p. 1406, 2006.
[48]C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface, IEEE Photon. Technol. Lett., vol. 20, p. 803, 2008.
[49]F. Dwikusuma, D. Saulys, and T. F. Kuech, “Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments, J. Electrochem. Soc., vol.49, p. G603, 2002.
[50]S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen, and D. S. Wuu, “Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing, IEEE Photonics Technol. Lett., vol. 18, p. 2623, 2006.
[51]M. K. Lee and K. K. Kuo, “Microlens array on sapphire substrate prepared by FIB to enhance electroluminescence of GaN/sapphire blue LED, Electrochem. Solid State Lett., vol. 10, p. H20, 2007.
[52]T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, Cone-shaped surface GaN-based light-emitting diodes, Phys. Stat. Sol. C, vol. 2, p. 2836, 2005.
[53]H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes, Solid-State Electronics, vol. 52, p. 1193, 2008.
[54]D. H. Kim, C. O Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns ,“ Appl. Phys. Lett., vol. 87, p. 203508-1, 2005.
[55]C. L. Lin, P. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, J. Y. Chang and C. Y. Liu, “Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diode,“ Appl. Phys. Letts., vol. 90, p. 242106-1, 2007.
[56]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in ingan measured by photoluminescence, Appl. Phys. Lett., vol. 91, p. 141101, 2007.
[57]A. Khan and K. Balakrishnan, “Present Status of Deep UV Nitride Light Emitters, Mater. Sci. Forum, vol. 590, p. 141, 2008.
[58]E. F. Schubert: Light-Emitting Diodes (Cambridge University Press, Cambridge, 2006) 2nd ed., p.27.
[59]S. L. Chen, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Lee, and B. W. Liu, “Fabrication of Dicing-Free Vertical-Structured High-Power GaN-Based Light-Emitting Diodes With Selective Nickel Electroplating and Patterned Laser Liftoff Techniques, IEEE Photonics Technol. Lett., vol. 19, p. 351, 2007.
[60]C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, “Properties of lead-free solder alloys with rare earth element additions, Mater. Sci. Eng., R, vol. 44, p. 1, 2004.
[61]W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Hung, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques, IEEE Photonics Technol. Lett., vol. 17, p. 1809, 2007.
[62]K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen, and B. W. Liou, “Effect of surface treatment on the performance of vertical-structure GaN-based high-power light-emitting diodes with electroplated metallic substrates, Jpn. J. Appl. Phys., vol. 45, p. 3436, 2006.
[63]Th. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications, J. Appl. Phys., vol. 95, p. 2203, 2004.
[64]R. M. Lin, J. C. Li, Y. L. Chou, M. C. Wu, “Using the Taguchi method to improve the brightness of AlGaInP MQW LED by wet oxidation, IEEE Photonics Technol. Lett., vol. 18, p. 1642, 2006.
[65]D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates, Science, vol. 311, p. 208, 2006.
[66]S. I. Park, A. P. Le, J. Wu, Y. Huang, X. Li, J. A. Rogers, “Light Emission Characteristics and Mechanics of Foldable Inorganic Light-Emitting Diodes, Adv. Mater., vol. 22, p. 3062, 2010.
[67]H. Y. Kuo, S. J. Wang, P. R. Wang, K. M. Uang, T. M. Chen, H. K. Hsu, J. C. Chou, and C. H. Wu, “Use of Elastic Conductive Adhesive as the Bonding Agent for the Fabrication of Vertical Structure GaN-Based LEDs on Flexible Metal Substrate, IEEE Photonics Technol. Lett., vol. 20, p. 523, 2008.
[68]Y. H. Cheng, C. M. Chen, C. H. Cheng, M. C. M. Lee, “Demonstration of Organic Light Emitting Diodes Fabricated on Flexible Al2O3-Embedded Poly(dimenthylsiloxane) Substrates, Jpn. J. Appl. Phys., vol. 48, p. 021502, 2009.
[69]H. Cho, C. Yun, J. W. Park, S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes, Org. Electron., vol. 10, p. 1163, 2009.
[70]S. Kim, K. Kim, K. Hong, J. L. Lee, “Investigation of Metal Peel-Off Technique for the Fabrication of Flexible Organic Light-Emitting Diodes, J. Electrochem. Soc., vol. 156, p. J253, 2009.
[71]E .F. Schubert and J. K. Kim, “Solid-state light sources getting smart, Science, vol. 308, p. 1274, 2005.
[72]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology, IEEE J. Select. Topics Quantum Electron., vol.8, p. 310, 2002.
[73]J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes, IEEE Photonics Technol. Lett., vol. 16, p. 1450, 2004.
[74]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes, Appl. Phys. Lett., vol. 78, p. 3379, 2001.
[75]D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate, IEEE Photonics Technol. Lett., vol. 18, p. 1406, 2006.
[76]C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, S. C. Wang, “Further enhancement of nitride-based near-ultraviolet vertical-injection light-emitting diodes by adopting a roughened mesh-surface, IEEE Photonics Technol. Lett., vol. 20, p. 803, 2008.
[77]F. Dwikusuma, D. Saulys, and T. F. Kuech, “Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments, J. Electrochem. Soc., vol. 49, p. G603, 2002.
[78]S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen, and D. S. Wuu, “Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing, IEEE Photonics Technol. Lett., vol. 18, p. 2623, 2006.
[79]Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology, Microelectron. Eng., vol. 54, p. 211, 2000.
[80]I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes, Appl. Phys. Lett., vol. 63, p. 2174, 1993.
[81]H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Improvement of InGaN–GaN Light-Emitting Diode PerformanceWith a Nano-Roughened p-GaN Surface, IEEE Photon. Technol. Lett., vol. 17, p. 983, 2005.
[82]T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong, K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang, “GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al2O3 powder, Appl. Phys. Lett., vol. 94, p. 161107, 2009.
[83]M. A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, S. C. Wang, “Improving Light Output Power of the GaN-Based Vertical-Injection Light-Emitting Diodes by Mg+ Implanted Current Blocking Layer, IEEE Photon. Technol. Lett., vol. 21, p. 688, 2009.
[84]J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer, Appl. Phys. Lett., vol. 90, p. 263511-1, 2007.
[85]C. F. Tsai, Y. K. Su, C. L. Lin, “Improvement in the Light Output Power of GaN-Based Light-Emitting Diodes by Natural-Cluster Silicon Dioxide Nanoparticles as the Current-Blocking Layer, IEEE Photon. Technol. Lett., vol. 21, p. 996, 2009.
[86]T. M. Chen, S. J. Wang, K. M. Uang, S. L. Chen, W. C. Tsai, W. C. Lee, and C. C. Tsai, “Use of Anisotropic Laser Etching to the Top n-GaN Layer to Alleviate Current Crowding Effect in Vertical-Structured GaN-Based Light-Emitting Diodes, Appl. Phys. Lett., vol. 90, p. 041115, 2007.
[87]T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, “Current Spreading and Blocking Designs for Improving Light Output Power from the Vertical-Structured GaN-Based Light-Emitting Diodes, IEEE Photon. Technol. Lett., vol. 20, p. 703, 2008
[88]J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-Extraction Enhancement of GaInN Light-Emitting Diodes by Graded-Refractive-Index Indium Tin Oxide Anti-Reflection Contact, Adv. Mater., vol. 20, p. 801, 2008.
[89]X. Da, X. Guo, L. Dong, Y. Song, W. Ai, and G. Shen, “The silicon oxynitride layer deposited at low temperature for high-brightness GaN-based light-emitting diodes, Solid-State Electronics, vol. 50, p. 508, 2006.
[90]X. Wang, Y. Li, H. Yang, X. Yi, L. Wang, G. Wang, F. Yang, and J. Li, “Design and Optimization of Dielectric Optical Coatings for GaN Based High Bright LEDs, Proc. SPIE, vol. 6841, p. 68410E, 2007
[91]T. Beyer and M. Tacke, “Antireflection coatings for PbSe diode lasers, Appl. Phys. Lett., vol. 73, p. 1191, 1998.
[92]M. Rajteri, M. L. Rastello, and E. Monticone, “Antireflection coatings for superconducting photodetectors, Nucl. Instrum. Methods Phys. Rev. A, vol. 444, p. 461, 2000.
[93]C. C. Striemer and P.M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications, Appl. Phys. Lett., vol. 81, p. 2980, 2002.
[94]S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays, Sol. Energy Mater. Sol. Cells, vol. 94, p. 1506, 2010.
[95]Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings, Opt. Express, vol. 19, p. 297, 2011.
[96]M. A. Green, Silicon Solar Cells: Advanced Principles and Practice (Bridge, Sydney, 1995).
[97]P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light, Nanotechnology, vol. 8, p. 53, 1997.
[98]Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask, Appl. Phys. Lett., vol. 78, p. 142, 2001.
[99]S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflection silicon surface for solar cells, Appl. Phys. Lett., vol. 88, p. 203107, 2006.
[100]C. H. Sun, B. Jiang, and P. Jiang, “Broadband moth-eye antireflection coatings on silicon, Appl. Phys. Lett., vol. 92, p. 061112, 2008.
[101]W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens, Opt. Lett., vol. 34, p. 3532, 2009.
[102]J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations, Opt. Express, vol. 18, p. 13083, 2010.
[103]Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals, J. Phys. D Appl. Phys., vol. 40, p. 5873, 2007.
[104]S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition, Appl. Opt., vol. 42, p. 4573, 2003.
[105]J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications, Appl. Phys. B, vol. 100, p. 891, 2010.
[106]Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells, Nano Lett., vol. 8, p. 1501, 2008.
[107]G. J. Lin, K. Y. Lai, C. A. Lin, Y. L. Lai, and J. H. He, “Efficiency Enhancement of InGaN-Based Multiple Quantum Well Solar Cells Employing Antireflective ZnO Nanorod Arrays, IEEE Electron Device Lett., vol. 32, p. 1104, 2011.
[108]D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Lee, and P. R. Wang, “Enhanced Light Output of Vertical GaN-Based LEDs with Surface Roughened by SiO2 Nanotube Arrays, Electrochem. Solid State Lett., vol. 14, p. H66, 2011.
[109]J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires, Opt. Express, vol. 18, p. A286, 2010.
[110]P. Beckman and A. Spizzichno , The Scattering of Electromagnetic Waves from Rough Surfaces Pergamon , (Oxford 1963).
[111]L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant Effi ciency Enhancement of GaAs Solar Cells with Graded Antireflection Layers Based on Syringelike ZnO Nanorod Arrays, Adv. Energy Mater., vol. 1, p. 506, 2011.
[112]F. Gracia, F. Yubero, J. P. Holgado, J. P. Espinos, A. R. Elipe, and T. Girardeau, “SiO2/TiO2 thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition, Thin Solid Films, vol. 500, p. 19, 2006.
[113]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chem. Mater., vol. 17, p. 1001, 2005.
[114]S. Tao, S. Gong, J. C. Fanguy, and X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing, Sens. Actuators B, vol. 120, p. 724, 2007
電子全文 電子全文(網際網路公開日期:20220101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊