跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宜璋
研究生(外文):Yi-ChangLee
論文名稱:Ku至Ka頻段具微小化與寬頻帶之微波單晶混頻器之研製
論文名稱(外文):Microwave Monolithic Mixers with Broadband and Miniaturization for Ku to Ka-band Applications
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:134
中文關鍵詞:單晶微波射頻電路混頻器次諧波混頻器馬遜巴倫電路
外文關鍵詞:Monolithic microwave integrated circuits (MMICs)MixerSubharmonic mixerMarchand balun
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
輕、薄、短、小的3C產品是目前市場的鐵律。該趨勢的維持,靠的是無線通訊系統快速發展。這意味著該微波系統與另外數位以及類比系統並存時,由發射端的正交訊號(I/Q)至接收端的正交訊號,所經過的各項零組件皆具關鍵性,且其特性環環相扣,必須ㄧ體討論並各段加以取捨,才能達到最佳化境界。在眾多關鍵性零組件中,混頻器正是其中一項。該三端元件應用與設計,在依賴的準則下與其平衡器變形所交織而成的各式混頻器以及應用於該頻段下之電氣特性,為本論文闡述之重點。
在混頻器的研究領域上,本論文著重於雙平衡式混頻器與次諧波混頻器。首先探討雙平衡式混頻器為基礎架構下,在環型二極體之前後,使用螺旋型馬遜巴倫(Marchand Balun),利用多層方式來加重其耦合效應,相較於傳統微帶線方式,進而達到面積微縮化且具寬頻特性。再者,在平衡器之接地處導引電流,藉由通過適度T模型或π模型之低通濾波器設計,加強輸出埠平衡性與隔離度,最終目的為取出ㄧ良好之中頻訊號。
接著探討不同次諧波混頻器之研製。第一部分,在設計單平衡式四次諧波混頻器原理方面,採用一螺旋型馬遜巴倫,將本地訊號造成差分及近3dB耦合後,分別輸入至反並聯式配對蕭特基二極體,產生四次諧波項訊號,與射頻訊號透過ㄧ帶通整合低通濾波器之機制進行混頻,取出ㄧ良好之中頻訊號。其設計目的於寬頻應用下,擁有高隔離度之射頻埠與中頻埠,且包含尺寸微型化之能力。第二部分,在設計二次諧波鏡頻抑制混頻器電路架構,採用兩組馬遜巴倫電路,將本地訊號進行功率分配,分別輸入至微帶線型之平行線平衡器,與射頻訊號透過ㄧ帶通整合低通濾波器之機制進行混頻,分離出良好之中頻訊號與多餘之鏡頻訊號。其設計目的於寬頻應用下,可提高中頻埠隔離度,且取代傳統射頻與中頻匹配電路,達到佈局精簡之效益。
最後,本論文亦提出雙平衡式星型混頻器。根據上述所習之,該電路佈局於本地埠採用ㄧ馬遜巴倫銜接兩組製造差分對二極體,於後端射頻埠與中頻埠,以微帶線為基礎架構,建立類馬遜巴倫電路,內含中通濾波器與虛接地應用,旨要造就高偶模阻抗、偶模與奇模之相位匹配,以達到寬頻應用與隔離度增加,同時也具備晶片微小化之能力。綜觀上述,如何應用基本平衡器電路與其變形,造就相關混頻器獨有得電性特性,則是未來的工作項目。

The thumb rule of 3C production on the market is light, thin, short and small. It depends on rapid development of wireless network for the current tendency with great drive. For optimizing the capacity of a whole wireless system, in other words, it must be considered how to design in and trade off totally because all turn-key components are closely linked with each other when the fundamental signals of “In-Phase” and “Quadrature” in base-band have been launched from the beginning of transceiver to the end of receiver as the area of radio frequency exists with digital and analog side by side in a system. The triple ports component, Mixer, is one of the turn-key ones as mentioned above. The key point in this dissertation is presented a unique electrical performance in certain band resulted from the practical applications of all kinds of original and transformable mixers base on correct theses.
The focus of this dissertation is double balanced mixer (DBM) and subharmonic mixer (SHM) research. First, the target designs of Marchand spiral balun with strong couple effect had several advantages of multi-layers, compared with microstrip line, to achieve chip miniaturization and wideband when it was connected with ring Schottky diodes. Indeed, it is essential to increase balance and isolation of output port by suitable low pass filter, including T model or π model, at virtual ground of balun to get an excellent intermediate frequency (IF) signal.
The part one of this section, research and implementation of different sub-harmonic mixer, is shown a single-balanced quadruple sub-harmonic passive mixer is designed and fabricated. A local oscillation (LO) Marchand spiral balun with balance for power splitter and a radio frequency (RF) filter, including low pass and band pass, are connect to anti-parallel diode pair (APDP) respectively for an excellent intermediate frequency extraction to fulfill the quadruple sub-harmonic mixing mechanism. The purposes of this study are high isolation of RF port and IF port, chip dimension reduction for wideband application. Part two of this section is presented a proposed high image ratio subharmonic mixer circuitry. Two LO Marchand baluns with power splitter and a coupler are connect to a parallel line balun by microstrip line individually for a compact IF extraction. The objects of this topic increase IF isolation, replace with conventional RF and IF matching circuit for wideband operation.
Finally, a novel architecture of a double balanced passive star mixer is discussed. Two set of balanced diodes configuration link up LO Marchand balun with RF and IF Marchand-like balun. The purposes of this layout have some abilities of high even-mode impedance, closely matched even and odd mode phase velocities. Therefore, it can be applied to wideband, high isolation and chip area shrinkage. To sum up, the future work is still how to design original or transformable mixers from the practical applications to get a unique electrical performance in certain band.

ABSTRACT (Chinese) …………………………………………………………… I
ABSTRACT (English) …………………………………………………………… III
ACKNOWLEDGMENTS ………………………………………………………… VI
CONTENTS ……………………………………..………………………………… VIII
FIGURE CAPTIONS ……………………………………..……………………… X
TABLE CAPTIONS ……………………………………..………………………… XV


Chapter 1 Introduction
1.1 Overview ……………………………….………………………………… 1
1.2 General Wireless Communication System ……………………………… 4
1.3 Motivation ………………….....…………………………………………… 8
1.4 Organization of this Dissertation …………………………………………… 9
1.5 Reference ………………………………………………………………… 10


Chapter 2 Design and Realize of Doubly Balanced Monolithic Mixer with IF Extraction
2.1 Introduction ……………………………….………………………………… 14
2.1.1 Normal Specifications of Mixers …………………………………….. 15
2.1.2 Basic Topologies of Mixers …………………………………………. 21
2.2 Implementation of Broadband Ring Mixer ………………………..……… 28
2.2.1 DBM Circuit Design for Passive Device …………………………….. 29
2.2.2 Circuit Implementation and Result Discussion ……………………….. 46
2.3 Advanced Implementation of Broadband Ring Mixer …...………………… 53
2.3.1 DBM Circuit Design for Passive Device …………………………….. 54
2.3.2 Circuit Implementation and Result Discussion ……………………….. 60
2.4 Summary …………………………………………………………………… 68
2.5 Reference ………………………………………………………………… 69


Chapter 3 Development of Subharmonic Mixer
3.1 Introduction ………………………………………………………………… 72
3.1.1 Basic Theories of Subharmonic and Image-Reject Mixers …………. 73
3.2 Mixer Application of a Single-balanced Quadruple …...………………… 78
3.2.1 SHM Circuit Design for Passive Device …………………………….. 79
3.2.2 Circuit Implementation and Result Discussion ………………………. 87
3.3 Mixer Application of a High Image Rejection Ratio …………..………… 93
3.3.1 IRM Circuit Design for Passive Device …………………………….. 94
3.3.2 Circuit Implementation and Result Discussion ………………………. 102
3.4 Summary …………………………………………………………………… 110
3.5 Reference ………………………………………………………………… 111


Chapter 4 Design of Doubly Balanced Monolithic Star Mixer
4.1 Introduction ………………………………………………………………… 115
4.2 Circuit Research for K to Ka Band ……….……………………………… 115
4.2.1 DBM Circuit Design for Passive Device …………………………….. 116
4.2.2 Circuit Implementation and Result Discussion …………………….. 120
4.3 Summary …………………………………………………………………… 126
4.4 Reference ………………………………………………………………… 127


Chapter 5 Conclusions and Future Works
5.1 Conclusions ………………………………………………………………… 129
5.2 Future Works ……………………………………………………………… 131


PUBLICATION LIST …………………………………………………………… 132
VITA …………………………………………………………..…………………… 134

Ch1:
[1]I. Bahl and P. Bhartia, Microwave solid state circuit design, John Wiley and Sons, INC., 2003.
[2]D. M. Pozar, Microwave and RF design of wireless systems, John Wiley & Sons Inc., 2000.
[3]R. Williams, Modern GaAs processing methods, Artech House, 2003.
[4]I. D. Robertson, and S. Lucyszyn, RFIC and MMIC design and technology. The Institute of Electrical Engineers, London, United Kingdom, 2001.
[5]T. H. Lee, “The design of CMOS radio-frequency integrated circuits, Cambridge University Press, 1998.
[6]A. Springer, L. Maurer, and R. Weigel, “RF system concepts for highly integrated RFICs for W-CDMA mobile radio terminals, IEEE Trans. Microw. Theory Tech., vol. 50, pp. 254-267, Jan. 2001.
[7]S. Emami, C.H. Doan, A. M. Niknejad, and R. W. Brodersen, “A highly integrated 60 GHz CMOS front-end receiver, in Proc. Int. Solid-State Circuits Conf. (ISSCC), pp. 190-191, Feb. 2007.
[8]A. Parsa, and B. Razavi, “A 60 GHz CMOS receiver using a 30 GHz LO, in
Proc. Int. Solid-State Circuits Conf. (ISSCC) 2008, pp. 190-191.
[9]H. C. Chuang, C. M. Lin, C. H. Lin, and Y. H. Wang, “A K- to Ka-band broadband doubly balanced monolithic ring mixer, IEEE Micro. and Wireless Compo. Lett., vol. 18 no. 6, pp. 401-403, Jun., 2008.
[10]M. Yu, R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power, IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 424–426, Oct. 2000.
[11] C. H. Lin, C. M. Lin, Y. A. Lai, and Y. H. Wang, “A 26-38 GHz monolithic doubly balanced mixer, IEEE Microw. and Wireless Compon. Lett., vol. 18 no. 9, pp. 623-625, Sep., 2008.
[12] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology, IEEE Microw. and Wireless Compon. Lett, vol. 19, no. 2, pp. 95-97, Feb.15, 2009.
[13] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31 GHz subharmonic passive mixer in 90 nm CMOS technology, IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[14] Y. A. Lai, C. M. Lin, C. P. Chang, C. H. Lin, and Y. H. Wang, “A Compact Ka-Band Doubly Balanced Sub-harmonic Mixer, in Pro. of IEEE Int. Conf. on Electron Devices and Solid-State Circuits (EDSSC), pp. 437-440, Dec. 20-22, 2007.
[15] K. W. Yeom, and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected PHEMT diodes, IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2435–2440, Jul. 2005.
[16]Y. A. Lai, S. H. Hung, C. N. Chen, and Y. H. Wang, “A miniature millimeter-wave monolithic star mixer with simple IF extraction circuit, J. of Electromagnetic Waves and Applications, vol. 23, pp. 2433-2440, 2009.
[17]S. Basu and S. A. Maas, “Design and performance of a planar star mixer, IEEE Trans. Microw. Theory Tech., vol. 41, no. 11, pp. 2028–2030, Nov. 1993.

Ch2:
[1]Y. A. Lai, C. M. Lin, C. P. Chang and Y. H. Wang, “A MMIC Doubler Based on Novel Open/Short Stub Hybrids, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 242-244, Apr. 2009.
[2]C. C. Weng, Z. M. Tsai, and H. Wang, “A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun, in IEEE Euro. Microw. Conf. Dig., vol. 3, pp. 1–3., Oct. 4–6, 2005.
[3]C. M. Lin, H. J. Wei, Y. T. Wang, S. C. Wang, and Y. H. Wang, “A novel doubly-balanced folded mixer for low supply voltage and direct up-conversion system, ICSICT 2006, Shanghai, Oct. 23-26, 2006.
[4]C. C. Tang, W.S. Lu, L.D. Van and W.S. Feng, “A 2.4GHz CMOS down-conversion doubly balance mixer with low supply voltage, IEEE Int. Symp. on Circuits and Systems (ISCAS) 2001, vol. 4, pp. 794-797, May 6-9, 2001.
[5]J. A. Hou and Y. H. Wang, “A Ka band balanced third LO-harmonic mixer using a lumped-elements quadrature hybrid, IEEE Microw. Wireless Compon. Lett, vol. 18, no. 6, pp. 404–406, June 2008.
[6]J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on high-pass and low-pass lumped elements, IEEE Microw. Wireless Compon. Lett, vol. 17, no. 8, pp. 595–597, Aug. 2007.
[7]S. A. Mass, Microwave mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[8]Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Modeling of monolithic RF spiral transmission line balun, IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 393-395, Feb. 2001.
[9]C. M. Lin, C. H. Lin, J. C. Chiu, and Y. H. Wang, “An ultra-broadband doubly balanced monolithic ring mixer for Ku- to Ka-band Applications, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 733-735, Apr. 2007.
[10]C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin, and Y. H. Wang, “A 16-44 GHz compact doubly balanced monolithic ring mixer, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
[11]D. An, S. C. Kim, J. D. Park, M. K. Lee, H. C. Park, S. D. Kim, W. J. Kim, and J. K. Rhee, “A novel 94-GHz MHEMT resistive mixer using a micromachined ring coupler, IEEE Microw. Wireless Compon. Lett, vol. 16, no. 6, pp. 467–469, Aug. 2006.
[12]T. A. Bos and E. Camargo, “A balanced resistive mixer avoiding an IF balun, in IEEE MTT-S Int. Dig., vol. 1, pp. 245–248, Jun. 2002.
[13]J. C. Jeong, I. B. Yom, and K. W. Yeom, “An active IF balun for a doubly balanced resistive mixer, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 224-226, Apr. 2009.
[14]M. Yu, R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power, IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 424-426, Oct. 2000.
[15]T. Y. Yang, and H. K. Chiou, “A 16-46 GHz mixer using broadband multilayer balun in 0.18 μm CMOS technology, IEEE Microw. Wireless Compon. Lett., vol. 7, no. 7, pp. 534-536, Jul. 2007.
[16]J. H. Chen, C. C. Kuo, Y. M. Hsin, and H. Wang, “A 15-50 GHz broadband resistive FET ring mixer using 0.18 μm CMOS technology, lEEE MTT-S Int. Dig., pp. 784-787, 2010.
[17]K. S. Ang, S. B. Economides, S. Nam, and I. D. Robertson, “A compact MMIC balun using spiral transformers, Asia-Pacific Microw. Conf., pp. 655-658, Singapore, Nov. 1999.
[18]H. C. Chuang, C. M. Lin, C. H. Lin, and Y. H. Wang, “A K- to Ka-band Broadband Doubly Balanced Monolithic Ring Mixer, IEEE Microw. Wireless Compon. Lett., vol. 18 no. 6, pp. 401-403, Jun., 2008.
[19]M. Südow, K. Andersson, P. Nilsson, and N. Rorsman, “A highly linear double balanced schottky diode S-band mixer, IEEE Microw. Wireless Compon. Lett., vol. 16, no.6, pp. 336–338, June 2006.
[20]T. Chang, J. Lin, “1-11 GHz ultra-wideband resistive ring mixer in 0.18 μm CMOS technology, IEEE Radio Freq. Integrated Circuits Symp., pp.16–46, June 2006.
[21]C. Song, I. LO, and O. B. Lubecke, “2.4 GHz 0.18 μm CMOS passive mixer with integrated baluns, in IEEE MTT-S Int. Dig., pp. 409–412, 2009.
[22]C.H. Lin, C. M. Lin, J. C. Chiu, T. Y. Tsai, and Y. H. Wang, “A Ka-band monolithic doubly-balanced mixer, in IEEE CSIC Symp. Dig., pp. 69–72, 2006.
[23]C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixers, IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793–802, Apr. 2008.

Ch3:
[1]L. Sheng, J. C. Jensen, and L E. Larson, A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter, IEEE J. of Solid-State Circuits, vol. 35, no. 9, Sep. 2000.
[2]Y. J. Hwang, C. H. Lien, H. Wang, M. W. Sinclair, R. G. Gough, H. Kanoniuk, and T. H. Chu, “A 78–114 GHz monolithic subharmonically pumped GaAs-based HEMT diode mixer, IEEE Microw. Wireless Compon. Lett., vol. 12, no. 6, pp. 209–211, Jun. 2002.
[3]W. C. Chen, S. Y. Chen, J. H. Tsai, T. W. Huang, and H. Wang, “A 38–48-GHz miniature MMIC subharmonic mixer, in Proc. Gallium Arsenide Other Semicond. Appl. Symp., pp. 437–440, 2005.
[4]F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology, IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1382–1391, May 2004.
[5]K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeter-wave broadband monolithic even harmonic image rejection mixer, IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, pp. 1443-1446, Jun. 1998.
[6]P. K. Singh, S. Basu, and Y. H. Wang, “Integrated compact broad Ka-band sub-harmonic single sideband up-converter MMIC, Progress In Electromagnetics Research C, vol. 8, pp. 179-194, 2009.
[7]M. Gavell, M. Ferndahl, S. E. Gunnarsson, M. Abbasi, and H. Zirath, “An image reject mixer for high-speed E-band (7176,8186 GHz) wireless communication, Proc. IEEE CSIC Symp. Dig., 14, Oct. 2009.
[8]K. Fujii, and H. Morkner, “A 630 GHz image-rejection distributed resistive MMIC mixer in a low cost surface mount package, IEEE MTT-S Int. Microw. Symp. Dig., pp. 37-40, Jun. 2005.
[9]C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, C. C. Liu, C. H. Chang, C. L. Wu, C. S. Chang and Y. H. Wang, “A PHEMT diode single-balanced mixer for Ku/K-band applications, Microw. Optical Tech. Lett., accepted, 2007.
[10]S. Raman, F. Rucky, and G. M. Rebeiz, “A high-performance W-band uniplanar subharmonic mixer, IEEE Trans. on Microw. Theory Tech., vol. 45, no. 6, pp. 955-962, June 1997.
[11]M. W. Chapman, and S. Raman, “A 60-GHz uniplanar MMIC 4X subharmonic mixer, IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2580-2588, Nov. 2002.
[12]K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, “A 94 GHz high performance quadruple subharmonic mixer MMIC, IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1249-1252, Jun. 2002.
[13]W. Y. Uhm, W. S. Sul, H. J. Han, S. C. Kim, H. S. Lee, D. An, S. D. Kim, D. H. Shin, H. M. Park, and J. K. Rhee, “A high performance V-band monolithic quadruple subharmonic mixer, IEEE MTT-S Int. Microw. Symp., vol. 2, pp. 1319-1322, Jun. 2003.
[14]C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23-37 GHz miniature MMIC subharmonic mixer, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679-681, Sept. 2007.
[15]C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10-40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 95-97, Feb. 2009.
[16]C. M. Lin, J. T. Chang, C. C. Su, S. H. Hung, and Y. H. Wang, “A 16-31 GHz miniature quadruple subharmonic monolithic mixer with lumped diplexer, Progress In Electromagnetic Research Lett., vol. 11, no. 2, pp. 21-30, 2009.
[17]W. C. Chien, C. M. Lin, C. H. Liu, S. H. Hung, and Y. H. Wang, “Wide-band high isolation subharmonically pumped resistive mixer with active quasi-circulator, Progress In Electromagnetics Research Lett., vol. 18, pp. 135-143, 2010.
[18]C. L. Kuo, C. C. Kuo, C. H. Lien, J. H. Tsai, and H. Wang, “A novel reduced-size rat-race broadside coupler and its application for CMOS distributed subharmonic mixer, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp. 194-196, Mar. 2008.
[19]S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath, “Analysis and design of millimeter-wave FET-based image reject mixers, IEEE Trans. on Microw. Theory and Tech., vol. 55, no. 10, pp. 2065-2074, Oct. 2007.
[20]K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeter-wave broadband monolithic even harmonic image rejection mixer, IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, pp. 1443-1446 , June 1998.
[21]J. A. Macedo, and M. A. Copeland, “A 1.9 GHz silicon receiver with monolithic image filtering, IEEE J. Solid-State Circuits, vol. 33, pp. 378-386, Mar. 1998.
[22]C. P. Liang, P. Z. Rao, T. J. Huang, and S. J. Chung, “A 2.45/5.2 GHz image rejection mixer with new dual-band active notch filter, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 716-718, Nov. 2009.
[23]C. C. Meng, T. H. Wu, J. S. Syu, S. W. Yu, K. C. Tsung, and Y. H. Teng, “2.4/5.7-GHz CMOS dual-band low-IF architecture using Weaver-Hartley image-rejection techniques, IEEE Trans. on Microw. Theory and Tech., vol. 57, no. 3, pp. 552-561, Mar. 2009.
[24]H. K. Chiou, W. R. Lian, and T. Y. Yang, “A miniature Q-band balanced subharmonically pumped image rejection mixer, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 463-465, Jun. 2007.
[25]W. C. Chien, C. M. Lin, Y. H. Chang, and Y. H. Wang, “A 9-21 GHz miniature monolithic image reject mixer in 0.18 μm CMOS technology, Progress In Electromagnetics Research Lett., vol. 17, pp. 105-114, Sept. 14, 2010.
[26]C. Y. Wu, and C. Y. Chou, “A 5-GHz CMOS double-quadrature receiver front-end with single-stage quadrature generator, IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 519-521, Mar. 2004.
[27]C. W. Kim, and S. G. Lee, “A 5.25 GHz image rejection RF front-end receiver with polyphase filters, IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 302-304, May 2006.

Ch4:
[1]Y. A. Lai, C. M. Lin, C. H. Lin, and Y. H. Wang, “A new Ka-band doubly balanced star mixer based on Lange couplers, IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 7, pp. 458-460, July. 2008.
[2]S. A. Maas and K. W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer, IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2330–2335, Dec. 1993.
[3]Y. A. Lai, C. N. Chen, Y. H. Chang, and Y. H. Wang, “A planar dual 180° hybrid using multi-coupled line Sections, IEEE Microw. and Wireless Compon. Lett., vol. 21, no.2, pp. 68-70, Feb. 2011.
[4]H. K. Chiou and H. H. Lin, “A miniature MMIC double doubly balanced mixer using lumped dual balun for high dynamic receiver application, IEEE Microw. Wireless Compon. Lett., vol. 7, no. 8, pp. 227–229, Aug. 1997.
[5]Z. Y. Zhang, Y. X. Guo, L. C. Ong, and M. Y. W. Chia, “A new wide-band planar balun on a single-layer PCB, IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 416–418, Jun. 2005.
[6]C.H. Lin, C. M. Lin, J. C. Chiu, T. Y. Tsai, and Y. H. Wang, “A Ka-band monolithic doubly-balanced mixer, in IEEE CSIC Symp. Dig., pp. 69–72, 2006.
[7]Y. A. Lai, S. H. Hung, and Y. H. Wang, “Compact and broadband millimeter-wave mixer based on the new phase relationship, IEEE Compound Semi. IC Symp. (CSICS), pp. 151-154, NC, USA, Oct. 11-14, 2009.
[8]S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer, IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440-442, Sep. 2004.
[9]Y. I. Ryu, K. W. Kobayashi, and A. K. Oki, “A monolithic broadband doubly balanced EHF HBT star mixer with novel microstrip baluns, IEEE MTT-S Int. Microw. Symp. Dig., pp. 119-122, 1995.
[10]K. W. Yeom, and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected PHEMT diodes, IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2435–2440, Jul. 2005.
[11]C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai, and Y. H. Wang, “A variable conversion gain star mixer for Ka-Band applications, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, 2007.
[12]C. Y. Chang, C. W. Tang, and D. C. Niu, “Ultra-broad-band doubly balanced star mixers using planar Mouw's hybrid junction, IEEE Trans. Microw. Theory and Tech., vol. 41, no. 6, pp. 1077-1085, 2001.
[13]C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixers, IEEE Trans. Microw. Theory and Tech., vol. 56, no. 4, pp. 793-802, 2008.
[14]C. H. Lin, C. M. Lin, Y. A. Lai, and Y. H. Wang, “A 26-38 GHz monolithic doubly balanced mixer, IEEE Microw. and Wireless Compon. Lett., vol. 18 no. 9, pp. 623-625, Sep., 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊