跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:巫嘉豪
研究生(外文):Chia-HaoWu
論文名稱:電漿輔助鑽石成核於經硫酸鹽及磷酸鹽類水溶液化學處理之矽與二氧化矽基板
論文名稱(外文):Plasma assisted diamond nucleation on silicon and silicon dioxide chemically treated by water solutions of sulfate and phosphate compounds
指導教授:曾永華曾永華引用關係
指導教授(外文):Yon-Hua Tzeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:169
中文關鍵詞:鑽石成核過硫酸銨微波電漿化學氣象沉積
外文關鍵詞:diamond nucleationammonium persulfateMPCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
鑽石成核於經化學溶液前處理之矽與二氧化矽基板,藉由微波電漿化學氣相沉積系統,在未外加任何偏壓下及未有任何經奈米鑽石顆粒的前處理,可得到成核密度大於一千倍對照於未經過化學前處理之基板。
基板經由硫酸鹽類及磷酸鹽類水溶液前處理,像是過硫酸銨、硫酸銅和磷酸銨。兩種前處裡方法,分別使用超音波震洗法與加熱致乾過硫酸銨法於微波電漿化學氣象沉積系統中使用Ar-rich/H2/CH4氣體混和參數在工作壓力90-200Torr與基板溫度700-900°C,也可成功實行於Ar-rich/N2/CH4、 CO2/CH4以及H2-rich/CH4等微波電漿化學氣相沉積參數下。
電子顯微鏡下顯示了經由加熱致乾過硫酸銨前處理可達到鑽石成核密度高達~10^9-10^10cm-2,然而卻會因咖啡環漬效應(coffee ring effect)影響於前處理後殘留在基板表面導致後續鑽石成核密度呈現環狀分布或疏密相間等不均勻現象發生。
532nm綠光源的拉曼散射顯示鑽石薄膜之鑽石特徵峰在1334cm-1左右,伴隨著鑽石缺陷與非鑽石相之D-band跟G-band以及在鑽石薄膜晶界中trans-poly-acetylene導致~1140 cm-1與~1480 cm-1峰值。
化學處理導致鑽石成核密度提升之機制目前仍未明朗,可能因素為基板表面因化學蝕刻導致粗糙度增加、化學藥品附著殘留或是形成鍵結於基板表面抑或是化學溶液中雜質如碳或金屬類所導致。化學處理鑽石成核法擁有簡單實行與價格便宜的優點,且不需額外的使用奈米鑽石顆粒等前處理與外加偏壓於微波電漿化學氣象沉積系統中即可達到高鑽石成核密度。

Diamond nucleation by microwave plasma chemical vapor deposition on chemically treated silicon and silicon dioxide substrates without pre-seeding by diamond nano-particles increases in density by more than three orders of magnitude from that without chemical treatments. Substrates treated by water solutions of sulfate and phosphate compounds, such as ammonium persulfate, copper sulfate, and ammonium phosphate, are subjected to microwave plasma chemical vapor deposition in Ar-rich/H2/CH4 gas mixtures at 90-200Torr gas pressure and 700-900°C substrate temperature. Scanning electron microscopy demonstrates that diamond nuclei are formed on ammonium persulfate treated silicon and silicon dioxide at densities of ~10^9-10^10cm-2. 532nm Raman scattering of the nanocrystalline and microcrystalline diamond diamond films exhibits the diamond peak around 1334cm-1, and the characteristic Raman peaks attributable to atomic hydrogen in trans-poly-acetylene within grain boundaries. This new method of diamond nucleation avoids the needs for pre-seeding of diamond nanoparticles or diamond debris and externally applied bias voltage.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1.1 奈米碳材料 1
1.2 鑽石簡介 2
1.3 鑽石的性質 4
1.4 鑽石的應用 7
1.5 研究動機 10
第二章 CVD鑽石文獻回顧 11
2.1 前言 11
2.2 鑽石結構與CVD鑽石 13
2.3 微波電漿化學氣相沉積系統 18
2.4 熱燈絲與直流電漿CVD系統 20
第三章 鑽石成核與鑽石成長 24
3.1 前言 24
3.2 鑽石成核法 25
3.3 機械式拋磨(Mechanical abrasion/scratching) 26
3.4 超音波顆粒震洗(Ultrasonic particle treatment) 27
3.5 機械式拋磨之成核機制 30
3.6 成核於中間層(Nucleation on intermediate layer) 31
3.7 化學處理法(Chemical treatment) 58
3.8 離子佈植(Ion implantation) 61
3.9 偏壓輔助成核(Bias enhanced nucleation) 62
3.10 鑽石成核對沉積鑽石薄膜之影響 69
第四章 實驗 74
4.1 前言 74
4.2 實驗儀器與耗材介紹 75
4.2.1耗材介紹: 75
4.2.2實驗設備與量測儀器介紹: 76
4.3 實驗步驟 83
4.4 實驗結果與討論 86
4.4.1 鑽石成核於石墨烯(Graphene)與石墨烷(Graphane) 86
4.4.2 鑽石成核於化學前處理後之矽與二氧化矽基板 93
4.4.3 氫氣(H2)含量對於鑽石成核密度之影響 97
4.4.4 甲烷(CH4)含量對於鑽石成核密度之影響 104
4.4.5 成長時間對於鑽石成核密度之影響 106
4.4.6 鑽石成核於磷酸三銨((NH4)3PO4)前處理之基板 110
4.4.7 鑽石成核於不同MPCVD條件下 112
4.4.8 鑽石成核於大面積基板與實驗的可重複性 121
4.4.9 表面張力之影響 125
4.4.10 鑽石成核於第二種化學溶液前處理法 126
4.4.11 咖啡環漬效應(Coffee ring effect) 132
4.5 化學處理法之鑽石成核機制研究與探討 137
4.6 鑽石薄膜沉積 151
第五章 結語 155
第六章 未來展望 157
參考文獻 159
[1] A.K. Geim, P. Kim, scientific American, inc.298, 90-97, (April 2008).
[2] Pierson, H. O. “Handbook of carbon, graphite, diamond, and fullerenes :
properties, processing, and applications. Park Ridge, N.J., U.S.A., Noyes
Publications, (1993).
[3] Davis, R. F. “Diamond films and coatings : development, properties, and
applications. Park Ridge, N.J., Noyes Pub, (1993).
[4] Hazen, R. M. “The diamond makers. New York, Cambridge University
Press, (1999).
[4] Bundy, F. P., Hall, H. T., Strong, H. M. and Wentorf, R. H. Jr., Nature
176:51(1955)
[5] Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf,
R. H. Jr., Nature 184:1094 (1959)
[6] Field, J. E. “The Properties of diamond. London ; New York, Academic
Press, (1979).
[7] Davies, G. ‘Diamond. Bristol, A. Hilger, (1984).
[8] Wilks, J. and E. Wilks. “Properties and applications of diamond. Oxford ;
Boston, Butterworth-Heinemann, (1991).
[9] Field, J. E. “The Properties of natural and synthetic diamond. London ;
San Diego, Academic Press, (1992).
[10] Gruen, D. M., O. A. Shenderova, et al. “Synthesis, properties, and
applications of ultrananocrystalline diamond. Dordrecht ; New York,
Springer, (2005).
[11] Shenderova, O. A. and D. M. Gruen. “Ultrananocrystalline diamond :
synthesis, properties, and applications. Norwich, N.Y., William Andrew
Pub, (2006).
[12] David Saada, Diamond and graphite properties, (2000).
[13] Nemanich, R. J., Shroder, R. E., Glass, J. T. and Lucovsky, G., Proc. of
the 19th Int. Cord. on the Physics of Semiconductors, (W. Zawadzki, ed.)
p 515, Inst. Of Physics, Polish Acad. of Science, Warsaw (1966)
[14] Frondel, C., U.B. Marvin, “Lonsdaleite, a new hexagonal polymorph of
diamond. Nature 214, 587 - 589, May (1967).
[15] Koji Kobashi, “Diamond Films Chemical Vapor Deposition for Oriented
and Heteroepitaxial Growth, Elsevier Ltd, ISBN: 978-0-08-044723-0,
(2005).
[16] Chris J.H. Wort, Richard S. Batmer, materialstoday, JAN-FEB (2008).
[17] S. Yugo, T. Kanai, T. Kimura and T. Muto: ‘Generation of diamond nuclei
by electric field in plasma chemical vapor deposition’, Appl. Phys. Lett.,
58, 1036–1038, (1991).
[18] Stoner B.R. & Glass, J.T. Appl. Phys. Lett., 60, 698, (1992).
[19] B. R. Stoner, G.-H. M. Ma, S. D. Wolter and J. T. Glass: ‘Characterization
of bias-enhanced nucleation of diamond on silicon by invacuo surface
analysis and transmission electron microscopy’, Phys. Rev. B, 45B,
11067–11084, (1992).
[20] Stoner, B.R., Kao, C., Malta, D.M. & Glass, R.C. Appl. Phys. Lett., 62,
2347, (1993).
[21] Kawarada, H., Wild, C., Herres, N., Locher, R., Koidl, P. & Nagasawa, H.
J. Appl.Phys., 81, 3490, (1997).
[22] Shintani, Y. J. Mater. Res., 11, 2955, (1996).
[23] Tachibana, T., Yokota, Y., Nishimura, K., Miyata, K., Kobashi, K. &
Shintani, Y. Diamond and Related Mater., 5, 197, (1996).
[24] Ohtsuka, K., Suzuki, K., Sawabe, A. & Inuzuka, T. Jpn. J. Appl. Phys., 35,
L1072, (1996).
[25] Saito, T., Tsuruga, Sh., Ohya, N., Kusakabe, K., Morooka, Sh., Maeda, H.,
Sawabe, A. & Suzuki, K. Diamond and Related Mater., 7, 1381, (1998).
[26] F. HÖrmann, H. Roll, M. Schreck and B. Stritzker: ‘Epitaxial Ir layers on
SrTiO3 as substrates for diamond nucleation: deposition of the films and
modification in the CVD environment’, Diamond Relat. Mater., 9,
256–261, (2000).
[27] Ohtsuka, K., Fukuda, H., Suzuki, K. & Sawabe, A. Jpn. J. Appl. Phys., 36,
L1214, (1997).
[28] Diamond. Electronic Properties and Applications, Eds. Pan, L.S. &
Kania, D.R. (Kluwer, Boston), (1995).
[29] Gluche, P., Adamschik, M., Vescan, A., Ebert, W., Szücs, F., Fecht, H.J.,
F1Öter, A.,Zachai, R. & Kohn, E. Diamond and Related Mater., 7, 779,
(1998).
[30] Kohn, E., Ebert, W., Adamschik, M., Schmid, P. & Denisenko, A. New
Diamond Science and Technology (MYU, Tokyo), 11, 81, (2001).
[31] Handbook of Industrial Diamond and Diamond Films Eds. Prelas, M.A.,
Popovici, G. & Bigelow L.K. (Marcel Dekker, New York), (1998).
[32] Watanabe, H., Takeuchi, D., Yamanaka, S., Okushi, H., Kajimura, K. &
Sekiguchi, T. Diamond and Related Mater., 8, 1272, (1999).
[33] Takeuchi, D., Watanabe, H., Yamanaka, S., Okushi, H. & Kajimura, K.,
Diamond and Related Mater., 9, 231 (2000).
[34] Okushi, H. Diamond and Rehtted Mater., 10, 281, (2001).
[35] Ri, S.-G., Yoshida, H., Yamaoka, S., Watanabc, H., Takcuchi, D. &
Okushi, H. J. Cryst. Growth, 235, 300, (2002).
[36] Sternshulte, H., Albrecht, T., Thonke, K., Saue, R., Griel3er, M. &
Grasscrbauer, M. Mater. Res. Soc. Syrup. Proc., 423, 693, (1996).
[37] Remes, Z., Uzan-Saguy, C., Baskin, E., Kalish, R., Avigal, Y., Neslfidek,
M. & Koizumi, S. Diamond and Related Mater., 13, 713, (2004).
[38] Sauer, R., Teofilov, N., Thonke, K. & Koizumi, S. Diamond and Related
Mater., 13, 727, (2004).
[39] Iijima, S., Aikawa, Y. & Baba, K. Appl. Phys. Lett., 57, 2646, (1990).
[40] Kamo, M., Sato, Y., Matsumoto, S. & Setaka, N., J. Cryst. Growth, 62,
642, (1983).
[41] Kamo, M., Matsumoto, S., Sato, Y. & Setaka, N.,US patent No.
4,434,188, (1984).
[42] Sevillano, E., Low Pressure Synthetic Diamond Manufacturing and
Applications, Eds. Dischler, B. & Wild, C. (Springer-Verlag, Berlin), 11,
(1998).
[43] Schwander, M. and K. Partes. A review of diamond synthesis by CVD
processes. Diamond and Related Materials 20(9): 1287-1301, (2011).
[44] A. Sawabe, H. Yasuda, T. Inuzuka, K. Suzuki, Appl. Surf. Sci. 33–34 539,
(1988).
[45] Sawabe, A. and H. Fukuda (1998). Heteroepitaxial growth of diamond.
Electronics and Communications in Japan Part Ii-Electronics 81(7): 28-37.
[46] Baik, Y.-J., Lee, J.-K., Lee, W.-S. & Eun, K.Y., J. Mater. Res., 13, 944,
(1998).
[47] Baik, Y. J., J. K. Lee, et al., Large area deposition of thick diamond film
by direct-current PACVD. Thin Solid Films 341(1-2): 202-206, (1999).
[48] Gurbuz, Y., O. Esame, et al. Diamond semiconductor technology for RF
device applications. Solid-State Electronics 49(7): 1055-1070, (2005).
[49] Williams, O. A. Nanocrystalline diamond. Diamond and Related
Materials 20(5-6): 621-640, (2011).
[50] Das, D. and R. N. Singh. A review of nucleation, growth and low
temperature synthesis of diamond thin films. International Materials
Reviews 52(1): 29-64, (2007).
[51] M.A. Prelas, G. Popovici, L.K. Bigelow, Handbook of Industrial
Diamonds and Diamond Films, Marcel Dekker Inc, New York,
p.1214,(1998).
[52] X. Jiang, K. Schiffmann, C.P. Klages, Physical Review B 50 (12)
8402–8410, (1994).
[53] K. Ohtsuka, K. Suzuki, A. Sawabe, T. Inuzuka, Japanese Journal of
Applied Physics Part 2—Letters 35 (8B) L1072–L1074, (1996).
[54] S. Matsumoto, Y. Sato, M. Kamo, J. Tanaka and N. Setaka: ‘Chemical
vapor deposition of diamond from methane–hydrogen gas’, Proc. 7th Int.
Conf. on ‘Vacuum metallurgy’, Tokyo, Japan, November (1982), Iron and
Steel Institute of Japan, 386–391.
[55] H. Liu and D. D. Dandy: ‘Studies on nucleation process in diamond CVD:
an overview of recent developments’, Diamond Relat. Mater, 4,
1173–1188, (1995).
[56] K. Mitsuda, Y. Kojima, T. Yoshida and K. Akashi: ‘The growth of
diamond in microwave plasma under low pressure’, J. Mater. Sci., 22,
1557–1562, (1987).
[57] H. Maeda, S. Masuda, K. Kusakabe and S. Morooka:‘Nucleation and
growth of diamond in a microwave plasma on substrate’, J. Cryst. Growth,
121, 507–515, (1992).
[58] S.-T. Lee, Z. D. Lin and X. Jiang: ‘CVD diamond films: nucleation and
growth’, Mater. Sci. Eng., 25, 123–154, (1999).
[59] B. Singh, Y. Arie, A. W. Levine and O. R. Mesker: ‘Effects of filament
and reactor wall materials in low-pressure chemical vapor deposition
synthesis of diamond’, Appl. Phys. Lett., 52, 451–452, (1988).
[60] P. Ascarelli, S. Fontana, Applied Surface Science 64 (4) 307–311 (1993).
[61] S. Iijima, Y. Aikawa, K. Baba, Applied Physics Letters 57 (25) 2646–2648
(1990).
[62] R. Akhvlediani, I. Lior, S. Michaelson, A. Hoffman, Diamond and Related
Materials 11 (3–6) 545–549, (2002).
[63] S. Iijima, Y. Aikawa and K. Baba: ‘Growth of diamond particles in
chemical vapor deposition’, J. Mater. Res., 6, 1491–1497, (1991).
[64] J. Singh: ‘Nucleation and growth mechanism of diamond during
hot-filament chemical vapor deposition’, J. Mater. Sci., 29, 2761–2766,
(1994).
[65] W. R. L. Lambrecht, C. H. Lee, B. V. Segall, J. C. Angus, Z. Li and M.
Sunkara: ‘Diamond nucleation by hydrogenation of the edges of graphitic
precursors’, Nature, 364, 607–610, (1993).
[66] K. Mallika and R. Komanduri: ‘Diamond coatings on cemented tungsten
carbide tools by low-pressure microwave CVD’, Wear, 224, 245–266,
(1999).
[67] F. Shahedipour, B. P. Conner and H. W. White: ‘Optical properties of
plasma species absorbed during diamond deposition on steel’, J. Appl.
Phys., 88, 3039–3046, (2000).
[68] J. G. Buijnsters, F. M. van Bouwelen, J. J. Schermer, W. J. P. van
Enckevort and J. J. ter Meulen: ‘Chemical vapor deposition of diamond on
nitrided chromium using an oxyacetylene flame’, Diamond Relat. Mater.,
9, 341–345, (2000).
[69] Z. Dai, C. Bednarski-Meinke and B. Golding: ‘Heteroepitaxial diamond
film growth: the a-plane sapphire–iridium system’, Diamond Relat.
Mater., 13, 552–556, (2004).
[70] M. D. Whitfield, J. A. Savage and R. B. Jackman: ‘Nucleation and growth
of diamond films on single crystal and polycrystalline tungsten
substrates’, Diamond Relat. Mater., 9, 262–266, (2000).
[71] S. A. Catledge and Y. K. Vohra: ‘Interfacial oxide and carbide phases in
the deposition of diamond films on beryllium metal’, Diamond Relat.
Mater., 9, 1327–1330, (2000).
[72] C. Z. Gu, X. Jiang, L. Kapplus and S. Mantl: ‘Comparison study of
nucleation and growth characteristics of chemical-vapordeposited
diamond films on CoSi2(001) and Si(001)’, J. Appl. Phys., 87, 1743–1747,
(2000).
[73] M. R. Chen, L. Chang., D. F. Chang and H. G. Chen: ‘Diamond growth on
CoSi2/Si by bias-enhanced microwave plasma chemical vapor deposition
method’, Mater. Chem. Phys., 72, 172–175, (2001).
[74] T. P. Ong, F. Xiong, R. P. H. Chang and C. W. White: ‘Nucleation and
growth of diamond on carbon-implanted single crystal copper surfaces’, J.
Mater. Res., 7, 2429–2439, (1992).
[75] K.-L. Chuang, L. Chang. and C.-A. Lu: ‘Diamond nucleation on Cu by
using MPCVD with a biasing pretreatment’, Mater. Chem. Phys., 72,
176–180, (2001).
[76] L. Nistor, V. Buschmann, V. Ralchenko, G. Dinca, I. Vlasov, J. Van
Landuyt and H. Fuess: ‘Microstructural characterization of diamond films
deposited on c-BN crystals’, Diamond Relat. Mater., 9, 269–273, (2000).
[77] Z. Feng, K. Komvopoulos, I. G. Brown and D. C. Bogy: ‘Effect of
graphitic carbon films on diamond nucleation by microwave
plasma-enhanced chemical-vapor deposition’, J. Appl. Phys., 74,
2841–2849, (1993).
[78] I. Endler, A. Leonhardt, H.-J. Scheibe and R. Born: ‘Interlayers for
diamond deposition on tool materials’, Diamond Relat. Mater., 5,
299–303, (1996).
[79] H. Jeon, C. L. Wang, A. Hatta and T. Ito: ‘Nucleation-enhancing treatment
for diamond growth over a large-area using magnetoactive microwave
plasma chemical vapor deposition’, J. Appl. Phys., 88, 2979–2983,
(2000).
[80] K. V. Ravi, C. A. Koch, H. S. Hu and A. Joshi: ‘Nucleation and
morphology of diamond crystals and films synthesized by the combustion
flame technique’, J. Mater. Res., 5, 2356–2366, (1990).
[81] C. P. Chang, D. L. Flamm, D. E. Ibbotson and J. A. Mucha: ‘Diamond
crystal growth by plasma chemical vapor deposition’, J. Appl. Phys., 63,
1744–1748, (1988).
[82] C. H. Lee, Z. D. Lin, N. G. Shang, L. S. Liao, I. Bello, N. Wang and S. T.
Lee: ‘Surface passivation in diamond nucleation’, Phys. Rev. B, 62B,
17134–17137, (2000).
[83] J. Yang, X. W. Su, Q. J. Chen and Z. D. Lin: ‘Si+ implantation: a
pretreatment method for diamond nucleation on a Si wafer’, Appl. Phys.
Lett., 66, 3284–3286, (1995).
[84] H. Sein, W. Ahmed, M. Jackson, R. Polini, I. Hassan, M. Amar and C.
Rego: ‘Enhancing nucleation density and adhesion of polycrystalline
diamond films deposited by HFCVD using surface treatments on Co
cemented tungsten carbide’, Diamond Relat. Mater., 13, 610–615, (2004).
[85] Williams, O. A. and M. Nesladek. Growth and properties of
nanocrystalline diamond films. Physica Status Solidi a-Applications and
Materials Science 203(13): 3375-3386, (2006).
[86] C. J. Tang, A. J. Neves and A. J. S. Fernandes: ‘Influence of nucleation
density on film quality, growth rate and morphology of thick CVD
diamond films’, Diamond Relat. Mater., 12, 1488–1494, (2003).
[87] G. S. Yang, M. Aslam, K. P. Kuo, D. K. Reinhard and J. Asmussen:
‘Effect of ultrahigh nucleation density on diamond growth at different
growth rates and temperatures’, J. Vac. Sci. Technol. B, 13B, 1030–1036,
(1995).
[88] Zhou, D., D. M. Gruen, et al. Control of diamond film microstructure by
Ar additions to CH4/H2 microwave plasmas. Journal of Applied Physics
84(4): 1981-1989, (1998).
[89] Pfeiffer, R., H. Kuzmany, et al. Evidence for trans-polyacetylene in
nano-crystalline diamond films. Diamond and Related Materials 12(3-7):
268-271, (2003).
[90] Williams, O. A., A. Kriele, et al. (2010). High Young's modulus in ultra
thin nanocrystalline diamond. Chemical Physics Letters 495(1-3): 84-89.
[91] Deegan, R. D., O. Bakajin, et al. Capillary flow as the cause of ring stains
from dried liquid drops. Nature 389(6653): 827-829, (1997).
[92] Yunker, P. J., T. Still, et al. Suppression of the coffee-ring effect by
shape-dependent capillary interactions. Nature 476(7360): 308-311,
(2011).
[93] Takahiro, K., K. Kawatsura, et al. Difference in stopping cross section
factor for He-4 ions between polycrystalline diamond and glassy carbon.
Nuclear Instruments & Methods in Physics Research Section B-Beam
Interactions with Materials and Atoms 249: 43-46, (2006).
[94] Ossi, P. M., C. E. Bottani, et al. Pulsed laser deposition of nano-glassy
carbon films. Applied Surface Science 248(1-4): 334-339, (2005).
[95] Ferrari, A. C. and J. Robertson. Resonant Raman spectroscopy of
disordered, amorphous, and diamondlike carbon. Physical Review B
64(7), (2001).
[96] Tang, C. J., M. A. Neto, et al. A comparison study of hydrogen
incorporation among nanocrystalline, microcrystalline and polycrystalline
diamond films grown by chemical vapor deposition. Thin Solid Films
515(7-8): 3539-3546, (2007).
[97] Takahiro, K., K. Kawatsura, et al. Difference in stopping cross section factor for He-4 ions between polycrystalline diamond and glassy carbon. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 249: 43-46, (2006).
[98] Ferrari, A. C. and J. Robertson. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 64(7), (2001).
[99] Actis, P., G. Caulliez, et al. Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24(12): 6327-6333, (2008).
[100]Xie, F. Y., W. G. Xie, et al. Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient. Surface and Interface Analysis 42(9): 1514-1518, (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top