跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭建賢
研究生(外文):Chien-HsienKuo
論文名稱:磷化鋁鎵銦系列發光二極體於可撓曲軟性基板之黏合轉置技術研究
論文名稱(外文):Fabrication and Bending Test of AlGaInP-based LED Arrays on Flexible Polyimide Substrate
指導教授:王水進
指導教授(外文):Shui-Jinn Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:磷化鋁鎵銦發光二極體撓曲軟性基板黏合轉置技術
外文關鍵詞:AlGaInPLEDFlexible Polyimide Substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
軟性電子產品為未來消費性電子科技產品重要發展方向之一,其可撓曲特性及其可靠度為產品開發成敗之極重要指標。而有機發光二極體(organic light emitting diode, OLED)因材料特性關係,可大面積的製作於非晶基板以及軟性基板上,同時滿足薄型化需求,因此目前主要的可撓性LED產品仍然以有機發光二機體為主要發展方向。但近期研究指出無機發光二極體(ILED)也能適應這些特點,同時提供更高的亮度、更好的發光效率以及良好的元件可靠度。
本論文以聚亞醯胺(polyimide, PI)為軟性基板,以異方性導電膠(anisotropic conductive film, ACF)為黏合介質,利用低溫黏合製程,將AlGaInP LED晶粒黏合於具金屬電極陣列之軟性基板上,成功開發一種將垂直結構發光二極體於可撓曲軟性基板之黏合轉置技術。我們克服了ACF製程瓶頸,藉由調變預壓合及本壓合之壓力,成功的改善了在壓合製程中晶粒破碎問題,證實ACF製程可應用於PI軟性基板與LED晶粒之間的黏著層及導電層。
我們亦量測了元件於各種撓曲狀態之光電特性,其撓曲半徑包含了75 mm及50 mm,在上述條件下LED均保持了原有的光電特性。此外我們發現元件承受撓曲應力時,發光波長會有位移的現象。當撓曲半徑越來越小時,位移的情況將越明顯,驗證了當MQW在承受應力時,能隙的確會產生變化。
本論文開發的轉置技術之元件,在承受高達三千次的動態撓曲循環後,依舊保持了良好的特性,甚至靜態撓曲半徑可小至1.5 mm,仍維持正常工作,此結果超過了目前OLED所能撓曲的最小曲率半徑,在未來可撓曲顯示器開發研究上具備極佳潛力。

Recently, various compound semiconductors have attracted considerable attention owing to their unique properties and structural versatility, which have led to their application in diverse fields. Among these, AlGaInP light-emitting diodes (LEDs), which are with luminescence in a wavelength ranging from red to yellow-green between the visible optical spectra, have been applied in various commercial applications, such as outdoor displays, automotive lighting, traffic signals, and general illumination. In this thesis, to further expand utilizations of AlGaInP LEDs into flexible electronics, the fabrication of AlGaInP LED arrays on flexible Polyimide (PI) substrates through the use of Anisotropic Conductive Film (ACF) as the bonding agent was proposed. The prepared LED arrays were subjected to bending test under both compressive and tensile strain with a bending curvature radius of 75 mm and 50 mm. Influence of the bending stress up to 3000 cycles on both the current-voltage (I-V) and light output power-current (Lop-I) characteristics and variation in the wavelength during different bending stress of the AlGaInP LED arrays were examined and discussed. Superiority in of the prepared LED arrays to achieve bending to radii as small as 1.5 mm with negligible changes in Lop and electrical properties of the devices were also demonstrated. The present work might be useful for applications that require mechanical properties that are normally associated with OLEDs but with the performance offered by inorganic AlGaInP LEDs.
中文摘要 I
英文摘要 III
誌 謝 V
目 錄 VI
表目錄 VIII
圖目錄 IX
第一章、序論 1
1-1、Ⅲ-Ⅴ族發光二極體之材料與發展 1
1-2、軟性顯示器介紹與發展趨勢 5
1-3、研究動機 7
第二章、可撓性基板材料與AlGaInP元件結構概述 10
2-1、可撓性基板 10
2-2、發光二極體發光原理 13
2-3、AlGaInP發光二極體元件結構 18
2-3-1、傳統式發光二極體 18
2-3-2、具透明基板之發光二極體 20
2-3-3、晶圓鍵合式(wafer bonding)發光二極體 21
第三章、可撓性垂直式AlGaInP LEDs之製作 24
3-1、元件架構與製作流程 24
3-2、材料介紹 29
3-2-1、PI基板 29
3-2-2、異方性導電膠(anisotropic conductive film, ACF) 31
3-2-3、SU-8負光阻 33
3-3、ACF壓合製程 35
3-4、LED晶粒對準製程 40
3-5、垂直落差填補製程 43
第四章、實驗結果與分析討論 45
4-1、LED晶粒轉置前後之光電特性分析 45
4-2、元件於基板彎曲操作下之I-V、Lop-I與WPE量測分析 48
4-3、元件於基板彎曲操作下之發光波長變化現象分析 53
4-4、元件於基板彎曲循環測試後光電特性與可靠度量測分析 60
第五章、結論與未來研究工作建議 65
5-1、結論 65
5-2、未來研究工作建議 66
參考文獻 69

[1]http://www.ledinside.com.tw/
[2]李偉吉,“具IZO透明導電層之高功率大面積垂直結構GaN-基LEDs之研製,國立成功大學微電子工程研究所碩士論文,2006。
[3]許國鋒,“利用金屬反射基板與透明電極結構進行AlGaInP發光二極體外部量子效率改善之研究,國立成功大學微電子工程研究所碩士論文,2002。
[4]A. F. Wright, and J. S. Nelson, “Bowing parameters for zinc‐blende Al1−xGaxN and Ga1−xInxN, App. Phys. Lett., vol. 66, pp. 3051-3053, 1995.
[5]殷尚彬,“取代傳統照明設備 高亮度LED仍有關鍵技術待克服,新科技電子,2004。
[6]蘇孟宗,“從智慧行動產品發展看軟性顯示應用機會,工研院產經中心(IEK),2011。
[7]http://www.displaysearch.com.tw/
[8]S. C. Lo, and P. L. Burn, “Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells, Chem. Rev., vol. 107, pp. 1097-1116, 2007.
[9]F. So, J. Kido, and P. Burrows, “Organic light-emitting devices for solid-state lighting, MRS Bull., vol. 33, pp. 663-669, 2008.
[10]S. I. Park, Y. Xiong, R. H. Kim, P. Elvikis, M. Meitl, D. H. Kim, J. Wu, J. Yoon, C. J. Yu, Z. Liu, Y. Huang, K. C. Hwang, P. Ferreira, X. Li, K. Choquette, and J. A. Rogers, “Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays, Science, vol. 325, pp. 977-981, 2009.
[11]D. A. Gaul, and W. S. Rees Jr, “True blue inorganic optoelectronic devices, Adv. Mater., vol. 12, pp. 935-946, 2000.
[12]S. Nakamura, and G. Fasol, “The blue laser diode: GaN based light emitters and lasers, Springer, New York, 1997
[13]田宏隆,“可撓式平面顯示器用基板材料,工業材料雜誌,第234期,2005。
[14]呂奇明,蘇俊瑋,“可撓顯示器基板材料與成型技術,工業材料雜誌,第273 期,2009。
[15]郭浩中,賴芳儀,郭守義,“LED原理與應用,五南圖書出版公司,2009。
[16]楊延鍇,“磷化鋁鎵銦發光二極體接面溫度研究,長庚大學半導體科技研究所碩士論文,2006。
[17]A. Zukauskas, M. S. Shur, and R. Caska, “Introduction to solid-state lighting, Wiley, New York, 2002.
[18]劉柏均,“三五族化合物半導體晶圓接合之基本研究及應用,國立交通大學材料科學與工程研究所博士論文,2005。
[19]Joseph George, and C.S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films, Surf. Coat. Technol., vol. 132, pp. 45-48, 2000.
[20]H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, J. Appl. Phys., vol. 86, pp. 6451-6461, 1999.
[21]S. Bhagwat, and R. P. Howson, “Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films, Surf. Coat. Technol., vol. 111, pp. 163-171, 1999.
[22]H. Kim, J. S. Horwitz, and G. Kushto, “Effect of film thickness on the properties of indium tin oxide thin films, J. Appl. Phys., vol. 88, pp. 6021-6025, 2000.
[23]李嘉元,“新型高亮度、熱穩定之晶體內部全方位反射層磷化鋁銦鎵發光二極體研製,國立成功大學微電子工程研究所碩士論文,2006。
[24]http://www2.dupont.com/Taiwan_Country_Site/zh_TW/index.html
[25]J. H. Lau, “Flip chip technologies, McGraw-Hill, 1996.
[26]SU-8 3000 Data sheet, http://www.kayakumicrocnem.jp
[27]M. J. Yim, and K. W. Paik, “Design and understanding of anisotropic conductive films (ACF’s) for LCD packaging, IEEE Trans. Comp. Packag. Technol. A, vol. 21, pp. 226-234, 1998.
[28]R. Dudek, S. Meinel, A. Schubert, B. Michel, L. Dorfmuller, P. M. Knoll, and J. Baumbach, “Flow characterization and thermo-mechanical response of anisotropic conductive films, IEEE Trans. Comp. Packag. Technol., vol. 22, pp. 177-185, 1999.
[29]R. Joshi, “Chip on glass-interconnect for row/column driver packaging, Microelectron. J., vol. 29, pp. 343-349, 1998.
[30]F. G. Shi, M. Abdullah, S. Chungpaiboonpatana, K. Okuyama, C. Davidson, and J. M. Adams, “Electrical conduction of anisotropic conductive adhesives: effect of size distribution of conducting filler particles, Mater. Sci. Semicond. Process., vol. 2, pp. 263-269, 1999.
[31]H. Nisgida, K. Sakamoto, Hideki Ogawa, and Hiromi Ogawa, “Micropitch connection using anisotropic conductive materials for driver IC attachment to a liquid crystal display, IBM J. Res. Develop., vol. 42, pp. 517-526, 1998.
[32]S. I. Park, A. P. Le, J. Wu, Y. Huang, X. Li, and J. A. Rogers, “Light emission characteristics and mechanics of foldable inorganic light-emitting diodes, Adv. Mater., vol. 22, pp. 3062-3066, 2010.
[33]E. Fred Schubert, “Light-emitting diodes, cambridge university, 2006.

電子全文 電子全文(網際網路公開日期:20220101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top