跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳暐旻
研究生(外文):Wei-MinChen
論文名稱:藉由摻雜寬能隙有機材料改善高分子有機太陽能電池效率之研究
論文名稱(外文):Improve the Efficiency of Polymer Solar Cell by Doping Wide-Band-Gap Material
指導教授:許渭州
指導教授(外文):Wei-Chou Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:91
中文關鍵詞:聚-3已基塞吩寬能隙材料有機高分子太陽能電池摻雜
外文關鍵詞:P3HTWide-band-gap materialOrganic polymer solar celldoping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用摻雜有機材料於主動層中製作有機高分子太陽能電池並有效的提升元件效率從3.24%到4.23%。首先,我們發現在主動層中摻雜螢光粉C545T 可以有效的提升薄膜對光的吸收能力,但是元件效率卻隨著摻雜濃度的增加而下降。藉由量測分析,我們相信摻雜C545T會阻礙載子的傳輸導致元件效率不如預期。因此,為了改善載子的傳輸,我們嘗試在主動層中摻雜寬能隙材料Ir(ppz)3。根據實驗結果,摻雜Ir(ppz)3 可以有效的幫助電洞傳輸使載子更加的平衡,且不會影響P3HT的結晶性和共軛長度。且摻雜濃度1mg 的Ir(ppz)3可以明顯的提升短路電流並有效的增加元件效率。其最佳的元件特性之短路電流為11.8mA/cm2、 開路電壓為0.61V、 理想因子為0.59、功率轉換效率可達4.23%。
In this thesis, we fabricated the polymer solar cells with doped organic material in active layer to enhance power conversion efficiency of device significantly from 3.24% to 4.23%. At first, we found that it can effectively enhance light absorption ability of thin film doped with fluorescent C545T in active layer, but power conversion efficiency of device decreases with increasing doping concentration. According to the result of measurements, we believed that doping C545T in active layer will limit the carrier transport to lead a decrease in PCE of device. Therefore, we try to dope wide-band-gap material Ir(ppz)3 in active layer to improve carrier transport. The experimental results demonstrated doping Ir(ppz)3 can effectively enhance ability of hole transport to make carrier more balanced, and it does not affect crystallization and conjugation length of P3HT. We found that doping Ir(ppz)3 1mg in active layer can significantly enhance short circuit current density and thus improve power conversion efficiency of device. The optimum device has the short circuit current density (Jsc) of 11.8mA/cm2, open circuit voltage (Voc) of 0.61V, fill factor (FF) of 0.59, and power conversion efficiency (PCE) of 4.23%, respectively.
Chapter 1 Introduction.....................................1
1-1 Background.............................................1
1-1-1 Evolution of Organic Solar Cell......................2
1-1-2 Electron blocking & Hole blocking layer..............3
1-2 Motivation.............................................4
1-3 Contents...............................................5
Chapter 2 Operation Principle..............................6
2-1 Solar Spectrum.........................................6
2-2 Mechanism of Inorganic Solar Cell......................6
2-3 Inorganic Photovoltaic Cell Characteristics............8
2-3-1 Open-Circuit Voltage (Voc)...........................8
2-3-2 Short-Circuit Current (Isc)..........................8
2-3-3 Fill Factor (FF).....................................9
2-3-4 Power Conversion Efficiency (PCE)....................9
2-4 Mechanism of Organic Photovoltaic Cell................10
2-5 Organic Photovoltaic Cell Characteristics.............12
2-5-1 Dark Current Characteristics........................12
2-5-2 Open-Circuit Voltage (Voc)..........................13
2-5-3 Short-Circuit Current (Isc).........................13
2-5-4 Power Conversion Efficiency (PCE)...................14
2-5-5 Fill Factor (FF)....................................14
Chapter 3 Experiment......................................15
3-1 Materials of organic solar cell.......................15
3-2 Process of Device Fabrication.........................16
3-2-1 Pre-Cleaning ITO Substrate..........................17
3-2-2 Fabrication of ITO Pattern..........................17
3-2-3 Treatment of ITO Surface............................17
3-2-4 Fabrication of Hole Transporting Layer..............17
3-2-5 Fabrication of Active Layer.........................18
3-2-6 Fabrication of Cathode..............................18
3-3 Measurements..........................................18
3-3-1 Current-Voltage measurement system..................19
3-3-2 UV-Vis absorption spectrum..........................19
3-3-3 Photoluminescence Spectrum (PL).....................19
3-3-4 Microscopes Raman Spectrometer......................20
3-3-5 X-ray Diffraction (XRD).............................20
3-3-6 Atomic Force Microscope (AFM).......................21
3-3-7 Space Charge Limited Current (SCLC).................21
Chapter 4 Results and Discussions.........................23
4-1 PCE of Device with doping C545T.......................23
4-2 Analysis the device of doping C545T...................23
4-2-1 UV-Vis Absorption Spectrum..........................24
4-2-2 Photoluminescence Spectrum (PL).....................25
4-2-3 X-ray Diffraction (XRD).............................25
4-2-4 Atomic Force Microscopy (AFM) & Optical Microscopy (OM)......................................................26
4-2-5 External Quantum Efficiency (EQE)...................27
4-3 Influence of polymer solar cells with dopingC545T.....27
4-4 PCE of Device with doping Ir(ppz)3....................28
4-5 Analysis the device of doping Ir(ppz)3................29
4-5-1 UV-Vis Absorption Spectrum..........................29
4-5-2 Microscope Raman Spectrometer.......................30
4-5-3 X-ray Diffraction (XRD).............................30
4-5-4 Atomic Force Microscopy (AFM) & Optical Microscopy (OM)......................................................31
4-5-5 Photoluminescence Spectrum (PL).....................32
4-5-6 Space Charge Limited Current (SCLC).................32
4-5-7 External Quantum Efficiency (EQE)...................33
4-6 Influence of polymer solar cells with doping Ir(ppz)3.33
4-7 Comparison of other teams.............................34
Chapter 5 Conclusion and Future Work......................35
Reference.................................................37


1.C. W. Tang, “Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183 (1986).
2.N. S. Sacriciftci, L, Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, SCIENCE 258, 1474 (1992).
3.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, SCIENCE 270, 1789 (1995).
4.G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater. 4, 864 (2005).
5.W. L. Ma, C. Y. Yang, X. Gong, K. G. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater. 15, 1617 (2005).
6.S. Alem, and Y. Tao, “Effect of mixed solvents on PCDTBT:PC70BM based solar cells, Organic Electronics 12, 1788 (2011)
7.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, SCIENCE 317, 222 (2007).
8.G. Li, R. Zhu, and Y. Yang, “Polymer solar cells, Nature Photonics 6, 153 (2012).
9.L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, Nature Photonics 6,180 (2012).

10.H. Frohne, S. E. Shaheen, C. J. Brabec, D. C. Muller, N. S. Sariciftci, and K. Meerholz, “Influence of the Anodic Work Function on the Performance of Organic Solar Cells, CHEMPHYSCHEM 9, 795 (2002).
11.E. Ahlswede, J. Hanisch, and M. Powalla, “Comparative study of the influence of LiF, NaF, and KF on the performanceof polymer bulk heterojunction solar cells, Appl. Phys. Lett. 90, 163504 (2007).
12.C. Y. Jiang , X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, “Low work function metal modified ITO as cathode for inverted polymer solar cells, Solar Energy Materials & Solar Cells 94, 1618 (2010).
13.L. Yang, H. Xu, H. Tian, S. Yin, and F. Zhang, “Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells, Solar Energy Materials & Solar Cells 94, 1831 (2010).
14.H. Kanno, Y. Sun, and S. R. Forrest, “High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices, Appl. Phys. Lett. 86, 263502 (2005).
15.J. Drechsel, B. Mannig, D. Gebeyehu, M. Pfeiffer, K. Leo, and H. Hoppe, “MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers, Organic Electronics 5, 175 (2004)
16.L. L. Chen, W. L. Lia, H. Z. Weia, B. Chua, and B. Li, “Organic ultraviolet photovoltaic diodes based on copper phthalocyanine as an electron acceptor, Solar Energy Materials & Solar Cells 90, 1788 (2006).
17.H. K. H. Lee, K. K. H. Chan, and S. K. “So Role of electron blocking and trapping layers in transport characterization of a photovoltaic polymer poly(3-hexylthiophene), Organic Electronics 13, 541 (2012)

18.L. B. Lin, R. H. Young, M. G. Mason, S. A. Jenekhe, and P. M. Borsenberger, “Transient photocurrents across organic–organic interfaces, Appl. Phys. Lett. 72, 864 (1998).
19.S. Han, L. Wang, G. Lei, and Y. Qiu “A Study on the Performances of White Organic Light-Emitting Diodes and the Morphologies of Their Hole-Blocking Layers, Jpn. J. Appl. Phys. 44, 5 (2005).
20.N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest , “Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells, Appl. Phys. Lett. 94, 023307 (2009).
21.Y. Sun, M. Wang, X. Gong, J. H Seo, B. B. Y. Hsu, F Wudl, and A. J. Heeger, “Polymer bulk heterojunction solar cells: function and utility of inserting a hole transport and electron blocking layer into the device structure, J. Mater. Chem. 21, 1365 (2011).
22.G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys. 98, 043704 (2005).
23.Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene, Appl. Phys. Lett. 86, 063502 (2005).
24.M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61 blends, Appl. Phys. Lett. 87, 083506 (2005).
25.P. Boland, K. Lee, G. Namkoong, “Device optimization in PCPDTBT:PCBM plastic solar cells, Solar Energy Materials & Solar Cells 94, 915 (2010).
26.G. Namkoong, P. Boland, K. Lee, and J. Dean, “Design of organic tandem solar cells using PCPDTBT:PC61BM and P3HT:PC71BM, Appl. Phys. Lett. 107, 124515 (2010).
27.Y. A. M. Ismail, T. Soga, and T. Jimbo, “Improvement in light harvesting and performance of P3HT:PCBM solar cell by using 9,10-diphenylanthracene, Solar Energy Materials & Solar Cells 93, 915 (2009).
28.Y. A. M. Ismail, T. Soga, and T. Jimbo, The contribution of coumarin 6 in light harvesting and photocurrent of P3HT:PCBM bulk heterojunction solar cell, Solar Energy Materials & Solar Cells 94, 1406 (2010).
29.J. W. Choi , C. Kulshreshtha , G. P. Kennedy , J. H. Kwon, S. H. Jung, and M. Chae, “Solution-processed bulk heterojunction organic solar cells with high polarity small molecule sensitizer, Solar Energy Materials & Solar Cells 95, 2069 (2011).
30.Y. Lou, Z. Wang, S. Naka, and H. Okada, “Enhanced short-circuit current density in poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 based organic solar cells by doping small molecular perylene, Appl. Phys. Lett. 99, 033305 (2011).
31.T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake
Toshiya Kamikado, Hiroyuki Yoshida, Akihiko Fujii, Yo Shimizu, and Masanori Ozaki, “Non-peripheral octahexylphthalocyanine doping effects in bulk heterojunction polymer solar cells, Organic Electronics 13, 335 (2012).
32.Dong Hwan Wang, Do Youb Kim, Kyeong Woo Choi, Jung Hwa Seo, Sang Hyuk Im, J. H. Park, O Ok Park, and A. J. Heeger, “Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles, Angew. Chem. 50, 5519 (2011).
33.K. Kim and D. L. Carroll, “Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices, Appl. Phys. Lett. 87, 203113 (2005).
34.W. Zhang, Y. Xu, H. Wang, C. Xu, and S. Yang, “Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulkhetero junction polymer solar cells, Solar Energy Materials & Solar Cells 95, 2880 (2011).
35.W.S. Syu, S. C. Lin, S. R. Tsenga, C. Y. Chena, C. Y. Liu, Y. C. Chao, H. F. Menga, and S. F. Horng, “Efficient multilayer red fluorescent polymer light-emitting diodes by host andguest blend system, Synthetic Metals 160, 871 (2010).
36.R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, and P. I. Djurovich, “Saturated deep blue organic electrophosphorescence using afluorine-free emitter, Appl. Phys. Lett. 87, 243507 (2005).
37.F. H. Wu, “The study of organic solar cell doped with metallic nanoparticle, National Sun Yat-Sen University (2009)
38.S. M. Sze, “Semiconductor devices: physics and technology-2nd ed, John Wiley and Sons, 1985.
39.J. C. Bernede, “Organic photovoltaic cell: history, principle and techniques, J. Chil. Chem. Soc. 53, 1549 (2008).
40.S. R. Forrest, “The Limits to Organic Photovoltaic CellEfficiency, MRS BULLETIN 30 (2005).
41.P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics, Sol. Energy Mat. Sol. Cells 90, 2150 (2006).
42.J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances, Appl. Phys. Lett. 84, 3013 (2004).
43.V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 94, 6849 (2003).
44.T. Yamanari, T. Taima, J. Sakai, and K. Saito, “Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11, 374 (2001).
45.K. H. Hsiao, “Study of silver oxide anode of single donor-acceptor heterojunction organic photovoltaic cell, National Cheng Kung University (2009).
46.K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes, Adv. Mater. 19, 441 (2007).
47.L. S. C. Pingree, B. A. MacLeod, D. S. Ginger, “The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport, J. Phys. Chem. C 21, 7922 (2008).
48.http://en.wikipedia.org/wiki/1,2-Dichlorobenzene
49.T. Fei, X. Gu, M. Zhang, C. Wang, M. Hanif, H. Zhang, and Y. Ma, “Optical and electronic properties of phosphorescent iridium(III)complexes with phenylpyrazole and ancillary ligands, Synthetic Metals 159, 113 (2009).
50.Z. Liu, M. G. Helander, Z. Wang, and Z. Lu, “Efficient Single-Layer Organic Light-Emitting Diodes Based on C545T-Alq3 System, J. Phys. Chem. C 114, 11931 (2010).
51.K. Furukawa, Y. Terasak, H. Ueda, M. Matsumura, “Effect of a plasma treatment of IT0 on the performance of organic electroluminescent devices, Synthetic Met. 91, 99 (1997).
52.T. Kawai, Y. Maekawa, M. Kusabiraki, “Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants, Surf. Sci. 601, 5276 (2007).
53.K. P. Kim, A. M. Hussain, D. K. Hwang, S. H. Woo, H. K. Lyu, S. H. Baek, Y. Jang, J. H. Kimy, “Work function modification of indium–tin oxide by surface plasma treatments using different gases, Jpn. J. Appl. Phys. 48, 021601 (2009).
54.J. G. Jang, S. J. Shin, S. K. Lim, H. J. Chang, S. O. Ryu, Myoung Seon Gong, Jun Yeob Lee, “Effect of plasma treatment of ITO electrode on the characteristics of green OLEDs with Alq¬3-C545T emissive layer, Mol. Cryst. Liq. Cryst. 498, 274 (2009).
55.Sharma, P. J. Hotchkiss, S. R. Marder, B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes, J. Appl. Phys. 105, 084507 (2009).
56.G. Li, Y. Yao, H. Yang, V. Shirotriya, G. Yang, Y. Yang, ‘‘Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv. Funct. Mater. 17, 1636 (2007).
57.C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80, 1288 (2002).
58.https://www.chem.agilent.com/en-US/Products/Instruments/molecularspectroscopy/uv-vis/pages/photodiode_array_benefits.aspx
59.T. H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), 9209 (2001).
60.http://140.116.176.21/www/technique/20071112/Raman.pdf
61.http://www.ncku.edu.tw/~facility/facility/index.htm
62.http://www.mobot.org/jwcross/spm/notes.htm

63.Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lu, “Carrier mobility of organic semiconductors based on current-voltage characteristics, J. Appl. Phys. 107, 034506 (2010)
64.M. A. Lampert, P. Mark, “Current injection in solids, Academic Press: New York (1970).
65.P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect, J. Phys. D Appl. Phys. 3, 151 (1970).
66.C. Y. Chen, and T. F. Guo, “The Study, fabrication, and measurement of polymer bulk-heterojunction solar cell, National Cheng Kung University (2008).
67.A. J. Moulé and K. Meerholz, “Controlling morphology in polymer-fullerene mixtures, Adv. Mater. 20, 240 (2008).
68.J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang,“High-conductivity poly(3,4-Ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices, Adv. Funct. Mater. 15, 203 (2005)
69.V. Shrotriya, J. Y. Ouyang, R. J. Tseng, G. Li, and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films, Chem. Phys. Lett. 411, 138 (2005).
70.T. Sakurai, “Structural study of P3HT and P3HT:PCBM thin film by synchrotron X-ray diffraction, Photo Factor Activity Report 25, 146 (2007).
71.T. Sajoto, “synthesis and photophysical characterization of phosphorescent cyclometalated Iridium (III) complexes and their use in organic light emitting devices, A Dissertation Presented to the Faculty of the Graduate School University of Southern California, 167 (2008).
72.M. H. Chang, “Polymer field-effect transistor fabricated by photosensitive polyimide gate dielectrics, National Cheng Kung University (2006).
73.F. Xie, Wallace C. H. Choy, X. Zhu, X. Li, and Z. Li, “Improving polymer solar cell performances by manipulating the selforganizationof polymer, Appl. Phys. Lett. 98, 243302 (2011).
74.Y. Sun, M. Wang, X. Gong, J. H. Seo, Ben B. Y. Hsu, F. Wudl and A. J. Heeger, “Polymer bulk heterojunction solar cells: function and utility of inserting a hole transport and electron blocking layer into the device structure, Journal of Materials Chemistry 21, 1365 (2011)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊