跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉馨鴻
研究生(外文):Shin-HungYeh
論文名稱:微波電漿化學氣相沉積法探討二氧化碳和甲烷混合氣體合成鑽石薄膜及其應用
論文名稱(外文):Synthesis and Applications of Diamond films by Microwave Plasma Chemical Deposition in Carbon Dioxide and Methane Gas Mixture
指導教授:曾永華曾永華引用關係
指導教授(外文):Yon-Hua Tzeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:二氧化碳鑽石薄膜電阻率
外文關鍵詞:carbon dioxidediamond filmresistivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
鑽石擁有許多特性,例如優異的硬度、良好的化學穩定性和生物相容性等,其中最重要的是它有良好的絕緣體性質,本實驗利用微波電漿化學氣相沉積法(Microwave plasma chemical vapor deposition,MPCVD),以30-60 SCCM甲烷和50 SCCM二氧化碳的混合氣體源來沉積鑽石薄膜,在沉積之前會用奈米鑽石懸浮液(DMSO)或過硫酸銨(Ammonium persulfate)溶液對基板做預處理。當甲烷的流量達到50 SCCM時,所沉積出來的薄膜則為超奈米多晶鑽石薄膜(Ultrananocrystalline diamond film),其作為用來增加成長初期的成核密度,再改變甲烷流量至33 SCCM來進行鑽石成長步驟,此時所得到的薄膜為微米多晶鑽石薄膜(Microcrystalline diamond film),亦可在紫外光拉曼光譜分析(UV Raman spectroscopy)當中得到訊號很強的1333 cm-1的鑽石峰值,此外利用電子顯微鏡(SEM)、原子力顯微鏡(AFM)、四點探針(Four probe measurement)和電阻率量測(Resistivity measurement)等分析並探討鑽石薄膜的特性。
在半導體CMOS元件與積體電路應用領域中,其後製程溫度不可超過400-500℃,欲整合CMOS與鑽石薄膜MEMS,必須能於低溫下以滿足實用之速率成長高品質鑽石,在本實驗利用450W的功率、10Torr的壓力以及甲烷(3 SCCM)、二氧化碳(5 SCCM)和氫氣(4 SCCM)混合氣體沉積出製程溫度為463℃的鑽石薄膜。

Diamond has many properties such as excellent hardness, good chemical stability and biocompatibility. One of the most important properties is good insulation. In this paper, diamond films were deposited by microwave plasma chemical vapor deposition (MPCVD) technique in 30-60 SCCM methane and 50 SCCM carbon dioxide gas mixture. Silicon substrates were pretreated by nano- diamond suspension (DMSO) or ammonium persulfate solution before deposition. When the methane flow rate is up to 50 SCCM, the deposition is ultranano- crystalline diamond. This used to increase nucleation density in the initial the diamond growth. It is them decreased to 33 SCCM for the growth of micro- crystalline diamond films. Strong 1333 cm-1 diamond Raman peak is obtained from the UV Raman spectroscopy. Diamond films were also analyzed by using scanning electron microscopy (SEM), atomic force microscopy (AFM), four probe measure- ment, resistvity measurement to explore their characteristics.
For CMOS devices and integrated circuit applications, the post-process temperatures should not exceed 400- 500℃. In this experiment, diamond films is grown at 463 ° C by using 450W power, 10Torr pressure and the gas mixture of methane (3 SCCM), carbon dioxide (5 SCCM) and hydrogen (4 SCCM) .

摘要 I
Abstract II
誌謝 III
表目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 鑽石的沿革 2
1-3 化性結構的簡介 5
1-4 鑽石薄膜的性質及應用 7
1-5 研究動機與目的 13
第二章 化學氣相沉積鑽石製程文獻回顧及原理基礎 15
2-1化學氣相沉積法(Chemical Vapor Deposition, CVD) 15
2-2 鑽石薄膜之成核及成長 24
2-3 CO2鑽石薄膜之成長機制 30
2-4 製程參數的影響 32
2-5 鑽石薄膜的種類 44
2-6低溫化學氣相沉積鑽石薄膜之文獻探討 48
第三章 實驗方法與儀器介紹 52
3-1實驗流程 52
3-2 儀器介紹 53
3-3鑽石薄膜的檢驗 56
3-4 微波電漿CVD沉積鑽石薄膜之步驟 64
第四章 結果與討論 68
4-1 改變甲烷濃度的影響 68
4-2 UNCD鑽石 71
4-3 MCD鑽石 76
4-4使用(NH4)2S2O8做預處理 82
4-5 預處理之比較 84
4-6 成長低溫鑽石薄膜 87
4-7 電性的量測和其應用 90
第五章 結論 95
參考文獻 96

[1] F.D. Rossini and R. S. J. Jessup, Res. National Bureau of Standards, USA, 21, p. 49, 1983.
[2] F.P. Bundy, J. Geophys, “The Phase and Reaction Diagram for Elemental Carbon, JOURNAL OF GEOPHYSICAL RESEARCH, 85 ( B12), pp. 6930-6936, 1980.
[3] F.P. Bundy, et al, “Man-Made Diamonds, Nature, 176, pp. 51-55, 1955.
[4] P.S. DeCarli, et al, “Diamond synthesis by explosive shock, Science, 133, pp. 1821-1822, 1961.
[5] B.T. Alder et al., “Behavior of strongly shocked carbon, Phys. Rev. Lett.,7, pp. 367-369, 1961.
[6] S.Matsumoto, “Development of diamond synthesis techniques at low pressures, Thin Solid Films, 368, pp. 231-236, 2000.
[7]J. Isberg, et al., “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond, Science, 297, pp. 1670-1672, 2002.
[8] G.Burkhard, et al., “Carbon phase transition by dynamic shock compression of a copper/graphite powder mixture, J. Appl. Phys., 33, pp.L876-L879, 1994.
[9] Roy, R. et al., Innov. Mater. Res., 1, pp.65-87, 1996.
[10] D. M. Gruen, et al., “Buckyball microwave plasmas: Fragmentation and diamond‐film growth, J. Appl. Phys. , 75,pp. 1758, 1994.
[11] M.N. Regueiro, et al., “Crushing C60 to diamond at room temperature, Nature, 355, pp. 237-239, 1992.
[12] G.W. Yang, et al., “Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching, J. Phys.: Condens. Matter, 10, p. 7923, 1998.
[13] G.T. Visscher, et al., “Poly(phenylcarbyne): A Polymer Precursor to Diamond-Like Carbon, Science, 260( 5113), pp. 1496-1499, 1993.
[14] F. Banhart, Phys. BL., 53, p. 33.
[15] Y.D. Li, et al., “A Reduction-Pyrolysis-Catalysis Synthesis of Diamond, Science, 281(5374), pp. 246-247, 1998.
[16] S.T. Lee, et al., “CVD diamond films: nucleation and growth, Materials Science & Engineering R-Reports, 25, pp. 123-154, 1999.
[17] J.C. Angus, “Diamond and Diamond-Like Films, Thin Solid Films, 216, pp. 126-133, 1992.
[18] M.N. Yoder, “Synthetic Diamond: Emerging CVD Science and Technology, John Wiley & Son, 1993.
[19] C. Chen & Q. W. Chen, “Recent development in diamond synthesis, International Journal of Modern Physics B, 22(4), pp. 309-326, 2008.
[20] 宋健民(1995),工業材料。
[21] Y.Gurbuz, et al., “Diamond semiconductor technology for RF device applications, Solid-State Electronics, 49, pp. 1055-1070, 2005.
[22] J.J. Gracio, et al, “Diamond growth by chemical vapor deposition, Phys. D: Appl. Phys., 43, 2010.
[23] Drift A V D, Phillips Res. Rep., 22, p. 267, 1967.
[24] S.-H. Kim, “Enhancement of low temperature selective deposition of diamond film, J. Korean Chem. Soc., 45,pp. 286-289, 2001.
[25] A. Hiraki, “Electron-emitter fabricated at low temperature by
diamond-nano-seeding technique, Mater. Chem. Phys., 72, pp.196-200, 2001.
[26] A. Gicquel, et al., “CVD diamond films: from growth to applications, Curr. Appl. Phys., 1, pp. 479-496, 2011.
[27] W. Zhu, et al., “Defect-enhanced electron field emission from chemical vapor deposited diamond, J. Appl. Phys., 78, pp. 2707-2711, 1995.
[28] C.F. Chen, et al., “Electrical properties of diamond films grown at low temperature, Thin Solid Films, 270, pp. 205-209, 1995.
[29] M.D. Drory and J.W. Hutchinson, “Diamond coating of titanium alloys, Science, 263, pp. 1753-1755, 1994.
[30] R. Ramesham and T. Roppel, “Selective growth of polycrystalline diamond thin films on a variety of substrates using selective damaging by ultrasonic agitation, J. Mater. Res., 7, pp. 1144-1151, 1992.
[31] D. K. Snood, W. R. Drawl and R. Messier, “The effect of carbon ion implantation on the nucleation of diamond on Ti–6Al–4V alloy, Surf. Coat. Technol., 51, pp. 307–312, 1992.
[32] J. E. Graebner, et al., “The thermal conductivity of chemical-vapor-deposited diamond films on silicon, J. Appl. Phys., 71, pp. 3143–3146, 1992.
[33] J. E. Graebner, et al., “Unusually high thermal conductivity in diamond films, Appl. Phys. Lett., 60, pp. 1576-1578, 1992.
[34] K. Plamann, et al., “Photothermal examination of the heat diffusion inhomogeneity in diamond films of sub-micron thickness, Diamond Relat. Mater., 3, pp. 752–756, 1994.
[35] Y. Muranaka, et al., “Worldwide status of low temperature growth of diamond, Diamond Relat. Mater., 3, pp. 313-318, 1994.
[36] 田明波與劉德令編譯(1991),薄膜科學與技術手冊(p.1),機械工業出版社。
[37] J. Carlsson, Thin Solid Films, 130, p.261, 1985.
[38] C. E. Morosanu, “Thin Films by Chemical Vapor Deposition, chapter 5, 1990.
[39] E. Sirtl, I. P. Hunt, and D. H. Sawyer, J. Eletrochem. Soc., 121, p.919, 1974.
[40] B.V. Spitsyn, L.L. Bouilov, A.E. Alexenko, and Braz. J., “Purification and functionalization of nanodiamond , Phys. ,30, p.471, 2000.
[41] S. Matsumoto, et al., “Growth of diamond particles from methane-hydrogen gas, Journal of Materials Science, 17, pp. 3106-3112, 1982.
[42] Y. Gurbuz, et al., “Diamond semiconductor technology for RF device applications, Solid-State Electronics, 49, pp. 1055-1070, 2005.
[43] M. Schwander and K. Partes, “A review of diamond synthesis by CVD process, Diamond and Related Materials, 20, pp. 1287-1301, 2011.
[44] K.J. Matthes, E. Richter, Schweistechnik. Schweisen von metallischen
Konstruktionswerkstoffen, Carl Hanser Verlag, Munchen, 2008.
[45] M. Murakawa and S. Takeuchi, Surf. Coat. Technol., 403, pp. 54–55, 1992.
[46] R.J.H. Klein-Douwel and J.J. ter Meulen, J. Appl. Phys., 83, p.4734, 1998.
[47] L.M. Hanssen, W.A. Carrington, J.E. Butler and K.A. Snail, Mater. Lett., 7, pp. 289, 1988.
[48] Y. Hirose, S. Amanuma and K. Komaki, “Synthesis of Diamond Using a Combustion Flame in the Atmosphere , J. Appl. Phys., 68, pp. 6401, 1990.
[49] M. Schwander and K. Partes, “A review of diamond synthesis by CVD process, Diamond and Related Materials, 20, pp. 1287-1301, 2011.
[50] J. B. Donnet, H. Oulanti, T. Le Huu, and M. Schmitt, “Synthesis of large single crystal diamond using combustion-flame method, Carbon, 44 p. 374, 2006.
[51] N.G.Glumac and D.G. Goodwin, “Diamond synthesis in a low-pressure flat flame, Thin Solid Films, 212, p.122, 1992.
[52] L.Vandenbulcke et al., “Molecular beam mass spectrometry and modelling of CH4–CO2 plasmas in relation with polycrystalline and nanocrystalline diamond deposition, Diamond & Related Materials, 19, pp.1103–1116, 2010.
[53] Angus J., “Synthetic Diamond: Emerging CVD Science and Technology, ed. K Spear and J Dismukes, New York: Wiley, pp. 21–39, 1994.
[54] M. Daenen, O.A. Williams, J. D'Haen, K. Haenen, M. Nesládek, Phys. Stat. Sol., 203(12), pp.3005–3010, 2006.
[55] S. Potocky, A. Kromka, J. Potmesil, Z. Remes, Z. Polackova, M. Vanecek, Phys. Stat. Sol., 203 (12), pp.3011–3015, 2006.
[56] F. Piazza and G. Morell, Diamond Relat. Mater., 16, pp.1950–1957, 2007.
[57] T.G. McCauley, D.M. Gruen, and A.R. Krauss, Appl. Phys. Lett., 73 (12) pp.1646–1648, 1998.
[58] S. Matsumoto, et al., “Growth of Diamond Particles from Methane-Hydrogen Gas, Journal of Materials Science,17, pp.3106-3112, 1982.
[59] J. J. Gracio, et al., “Diamond growth by chemical vapor deposition, J. Phys. D: Appl. Phys., 43(374017), 2010.
[60] C. J. Chu, et al., “Mechanism of diamond growth by chemical vapor deposition: Carbon-13 studies, J. Appl. Phys., 71(3), p.1528, 1992.
[61] A. Inspektor, Y. Liou, T. McKenna, and R. Messier, “Plasma CVD diamond deposition in C-H-O systems, Surf. Coating Technol., 39-40 (40), pp. 211-221, 1989.
[62] Y. Liou, R. Weimer, D. Knight, and R. Messier, “Effect of oxygen in diamond deposition at low substrate temperatures, Appl. Phys. Lett., 56(437), 1990.
[63] P. K. Bachmann, “General Aspects ofCVD Growth of Diamond and Their Correlation, Properties and Growth of Diamond, G. Davies, Ed., Data Reviews, London, INSPEC, 9, p.364, 1994.
[64] S. Matsumuto, Y. Sato, M. Tsatsumi, and N. Sekata, l. Mater Sci., 17, 1982.
[65] A. R. Badzian, in Advances in X-Ray Analysis, C. S. Barrett, J. V. Grefrich, R. Kenkins, J. C. Russ, 1. W. Richardson, and P. K. Predeck, Eds., Plenum Press, New York, 31(113), 1988.
[66] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, Appl. Phys. Lett., 66, p.3287, 1995.
[67]. S. Soderberg, A. Gerendas, and M. Sjostrand, Vacuum, 41, p.1317, 1990.
[68] Mitsuda, Y., et al., “The growth of diamond in microwave plasma under low-pressure, Journal of Materials Science, 22(5), pp.1557-1562, 1987.
[69] Iilima, S., Y. Aikawa, and K. Baba, “Early formation of chemical vapor-deposition diamond films, Applied Physical Letters, 57(25), pp.2646-2648, 1990.
[70] Buijnster, J. G., L. Vazquez, and J.J. ter Meulen, “Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth, Diamond and Related Materials, 18(10), pp.1239-1246, 2009.
[71] Williams, O.A., et al., “Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chemical Physics Letters, 445(4-6), pp.255-258, 2007.
[72] Shenderova , O.,S. Hens, and G. McGuire, “Seeding slurries based on detonation nanodiamond in DMSO, Diamond and Related Materials, 19(2-3), pp.260-267, 2010.
[73] H. Liu and D. D. Dandy, “Studies on nucleation process in diamond CVD: an overview of recent developments, Diamond Relat. Mater., 4, pp. 1173–1188, 1995.
[74] Denning, P.A. and D.A. Stevenson, “Influence of Substrate Topography on the Nucleation of Diamond Thin-Films, Applied Physics Letters, 59(13), pp.1562-1564, 1991.
[75] Liu, H.M. and D. S. Dandy, “Studies on nucleation process n diamond CVD: An overview of recent development, 4(10), pp.1173-1188, 1995.
[76] Zhong et al., “Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping, J. Appl. Phys., 105, 2009.
[77] Gruen, D. M., “Nanocrystalline diamond films, Annual Review of Materials Science, 29, pp.211-259, 1999.
[78] Xiao, X., et al., “Low temperature growth of ultrananocrystlline diamond, Journal of Applied Physics, 96(4), pp.2232-2239, 2004.
[79] Chen, L.J., et al., “Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond, Journal of Applied Physics, 101(6), 2007.
[80] O. Ternyak, R. Akhvlediani, and A. Hoffman, “Study on diamond films with ultra high nucleation density deposited onto alumina, sapphire and quartz, Diamond and Related Materials, 14(3-7), pp.323-327, 2005.
[81] J. G. Buijnsters, et al., “Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth, Diamond & Related Materials, 18, pp.1239–1246, 2009.
[82] P. K. Bachmann, D. Leers, H. Lydtin, D.U. Wiechert, Diamond Relat. Mater., 1, 1991.
[83] P.K. Bachmann, H.G. Hagemann, H. Lade, D. Leers, F. Picht, D.U. Wiechert, MRS Symp.Proc., 339, pp.267, 1994.
[84] S. C. Eaton and M. K. Sunkara, “Construction of a new C–H–O ternary diagram for diamond deposition from the vapor phase, Diamond Relat. Mater., 9, pp.1320–1326, 2000.
[85] G. Bhimarasetti and M. K. Sunkara, “The process window for diamond deposition from the vapor phase with sulpher in the C–H–O feed gas mixtures, Thin Solid Films, 440, pp.78–86, 2003.
[86] Petherbridge, May, and Ashfold, “Modeling of the gas-phase chemistry in C-H-O gas mixtures for diamond, Journal of Applied Physics, 89(9), 2001.
[87] Das and Singh, “A review of nucleation, growth and low temperature synthesis of diamond thin films, International Materials Reviews, 52(1), 2007.
[88] J. R. Petherbridge, P. W. May, S. R. J. Pearce, K. N. Rosser and M. N. R. Ashfold, “Low temperature diamond growth using CO2/CH4 plasmas: molecular beam mass spectrometry and computer simulation investigations, J. Appl. Phys., 89, pp.1484–1492, 2001.
[89] Y. Liu, et al., “Effects of hydrogen additive on microwave plasma CVD of nanocrystalline diamond in mixtures of argon and methane, Diamond and Related Materials, 13, pp.671-678, 2004.
[90] Y. Tzeng, C. Liu, and A. Hirata, “Effects of oxygen and hydrogen on electron field emission from microwave plasma chemically vapor deposited microcrystalline diamond, nanocrystalline diamond, and glassy carbon coatings, Diamond and Related Materials, 12, pp.456-463, 2003.
[91] K.E. Spear, “Chemical Vapor Deposition of Diamond and Ceramic Coatings, Materials Science Forum, 154, 1994.
[92] P Dennig, et al., “Influence of Substrate Treatments on Diamond Thin-Film Nucleation, Thin Solid Films, 212, pp.63-67, 1992.
[93] M.A. Elliott et al., “Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas, Diamond and Related Materials, 9, pp.311–316, 2000.
[94] S. Michaelson and A. Hoffman, “Hydrogen in nano-diamond films, Diamond and Related Materials, 14, pp.470-475, 2005.
[95] D. M. Gruen, “Nanocrystalline diamond films, Annual Review of Materials Science, 29, pp.211-259, 1999.
[97] Y. Muranaka, H. Yamashita, H. Miyadera, J. Vac. Sci. Technol. A., 9(76), 1991.
[98] D. Das, et al., “Effect of oxygen on growth and properties of diamond thin film deposited at the low surface temperature, Journal of Vacuum Science & Technology A, 26, pp.1487-1496, 2008.
[99] S.J. Harris, A.M. Weiner, Appl. Phys. Lett., 55, 1989.
[100] Y. Liou, A. Inspektor, R. Weimer, D. Knight, R. Messier, J. Mater. Res., 5, 1990.
[101] Biwu Sun, Xiaopin Zhang, Qinzhe Zhang, Zhangda Lin, J. Appl. Phys., 73(9), 1993.
[102] Q. Zhang et al., “The effect of CO2 on the high-rate homoepitaxial growth of CVD single crystal diamonds, Diamond & Related Materials, 20, pp. 496–500, 2011.
[103] Tsugawa, et al., “Nanocrystalline diamond film growth on plastic substrates at temperatures below 100 °C from low-temperature plasma, Physical Review B, 82, 2010.
[104] Zhang Chung-Mei, et al., “Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method, Chin. Phys. Lett., 27(8), 2010.
[105] Frantisek Fendrych, et al., “Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system, J. Phys. D: Appl. Phys., 2010.
[106] M. A. Elliott, et al., “Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasma, Diamond and Related Materials, 9, pp. 331-316, 2000.
[107] Petherbridge, et al., “Low temperature diamond growth using CO2 /CH4 plasmas: Molecular beam mass spectrometry and computer simulation investigations, J. Appl. Phys., 89(2), 2001.
[108] J. Stiegler, et al., “Low temperature limits of diamond films growth by microwave plasma-assisted CVD, Diamond and Related Materials, 5, pp. 226-230, 1996.
[109] F. Silva, et al., “Microwave engineering of plasma-assisted CVD reactors for diamond deposition, Journal of Physics-Condensed Matter, 21, 2009.
[110] X. M. Meng, et al., “Nano-crystalline CVD diamond films deposited on cemented carbide using high current extended DC arc plasma process, Vacuum, 82, pp. 543-546, 2008.
[111] S. Michaelson and A. Hoffman, “Hydrogen in nano-diamond films, Diamond and Related Materials, 14, pp. 470-475, 2005.
[112] D. Zhou, et al., “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas, Journal of Applied Physics, 84, pp. 1981-1989, 1998.
[113] D. M. Gruen, “Nanocrystalline diamond films, Annual Review of Materials Science, 29, pp. 211-259, 1999.
[114] T. Lin, et al., “Compositional mapping of the argon-methane-hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system, Applied Physics Letters, 77, pp.2692-2694, 2000.
[115] A. N. Jones, et al., “The impact of inert gases on the structure, properties and growth of nanocrystalline diamond, Journal of Physics-Condensed Matter, 15, pp. S2969-S2975, 2003.
[116] Y. K. Liu, et al., “Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon, Diamond and Related Materials,13, pp. 1859-1864, 2004.
[117] M.I. De Barros and L. Vandenbulcke, “Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature, Diamond and Related Materials, 9, pp.1862-1866, 2000.
[118] O.A. Williams, et al., “Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond, Diamond and Related Materials, 15, pp.654-658, 2006.
[119]X. Xiao, et al., “Low temperature growth of ultrananocrystalline diamond, Journal of Applied Physical, 96, pp. 2232-2239, 2004.
[120] P.W. May, et al., “Simplified Monte Carlo simulations of chemical vapour deposition diamond growth, Journal of Physics-Condensed Matter, 21, 2009.
[121] A.V. Sumant, et al., “Ultrananocrystalline diamond film as a wear-resistant and protective coating for mechanical seal applications, Tribology Transactions, 48, pp. 24-31, 2005.
[122] O. Auciello, et al., “Are diamonds a MEMS' best friend?, IEEE
Microwave Magazine, 8, pp. 61-75, 2007.
[123] A. V. Sumant, et al., “Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications, Mrs Bulletin, 35, pp. 281-288, 2010.
[124] A. V. Sumant, O. Auciello, H.-C. Yuan et al., “Large Area Low Temperature Ultrananocrystalline Diamond (UNCD) Films and Integration with CMOS Devices for Monolithically Integrated Diamond MEMS/NEMS-CMOS Systems, Proceedings of SPIE, pp. 731817-1-731817-7, 2009.
[125] T.D. Corrigan, A.R. Krauss, D.M. Gruen, et al., “Low temperature growth of ultrananocrystalline diamond on glass substrates for field emission applications, in Proceedings of the Amorphous and Nanostructured Carbon Symposium, 1999.
[126] Yasushi Muranaka, Hisao Yamashita, and H. Miyadera, “Low temperature (400°C) growth of polycrystalline diamond films in the microwave plasma of CO/H2 and CO/H2/Ar systems, J. Vac. Sci. Technol. A, 9(1), pp. 76-84, 1991.
[127] Joungchel Lee, R. W. Collins, and R. Messier, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition, Appl. Phys. Lett., 70(12), pp. 1527-1529, 1997.
[128] A. Hiraki, “Low-temperature (200℃) growth of diamond on nano-seeded substrates, Applied Surface Science, 162, pp. 326-331, 2000.
[129] D. Das, V. Jayaseelan, R. Ramamurti et al., “Low surface temperature synthesis and characterization of diamond thin films, Diamond and Related Materials, 15(9), pp. 1336-1349, 2006.
[130] Ken-ichi Itoh, Osamu Matsumoto, “Diamond deposition procedure from microwave plasmas using a mixture of CO+CH as carbon source, Thin Solid Films, pp.18-23.
[131] Kazuo Tsugawa, et al. (2010), “Nanocrystalline diamond film growth on plastic substrates at temperatures below 100 °C from low-temperature plasma, PHYSICAL REVIEW B, 82, 2010.
[132] M.I. De Barros, L. Vandenbulcker, “Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature, Diamond and Related Materials, 9, pp. 1862-186, 2000.
[133] http://www.williamsonir.com/content11043
[134] J. Robertson, “Diamond-like amorphous carbon, Materials Science & Engineering R-Reports, 37, pp.129-281, 2002.
[135] 汪建民(1998),材料分析,中國材料科學學會,第698頁,新竹市。
[136] T. Vandevelde, et al., “Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition, Thin Solid Films, 340, pp.159-163, 1999.
[137] G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 56, 1986.
[138] http://www.topometrix.com/spmguide/1-2-1.htm
[139] http://en.wikipedia.org/wiki/File:Ammonium-persulfate-3D-balls-ionic.png
[140] Chiahao Wu and Yonhua Tzeng, “Chemically Assisted Diamond Nucleation by Microwave Plasma CVD, New Diamond and New Carbon, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top