跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭銘祥
研究生(外文):Ming-HsiangCheng
論文名稱:藍光有機發光二極體搭配色轉換層的可撓式白光有機發光二極體之研製
論文名稱(外文):The Fabrication of White Organic Light-Emitting Devices Based on Flexible Substrate by Coupling Blue Organic Light-Emitting Device and Color Conversion Layer
指導教授:許渭州
指導教授(外文):Wei-Chou Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:88
中文關鍵詞:白光色轉換層電子阻隔可撓式
外文關鍵詞:white lightcolor conversion layerelectron blockingflexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於本文中,我們藉由藍光有機發光元件結合色轉換層的結構探討具有高色穩定度的白光有機發光元件。在施加偏壓後,電激發了藍光有機發光元件,藉由色轉換層吸收電激發的藍光進而以光激發光的形式發光,在不同偏壓下能夠有很好的色穩定度表現。為了能有效的使色轉換層以光激發光表現,色轉換層之吸收頻譜與藍光有機發光元件之發光頻譜必須有良好的重疊性。在實驗中,藍光有機發光元件的發光層以MADN: 3% DSA-Ph組成,電激發光頻譜的峰值為470 nm與494 nm,我們選擇DCJTB與Rubrene為色轉換層,吸收頻譜分別為505 nm與503 nm,發光頻譜為655 nm與564 nm。
於實驗中,我們主要使用兩種元件的架構,藍光有機發光元件與色轉換層分別於基板的異側或同側。首先我們完成藍光有機發光元件,再成長色轉換層於基板另一側,分別使用四種不同結構之色轉換層,分別為單純使用單一薄膜DCJTB或Rubrene、將Rubrene摻雜於DCJTB中,以及先後成長單一薄膜Rubrene與DCJTB。我們得到此一架構之最佳化的白光元件為Rubrene (500 nm)/PET/ITO/NPB (40 nm)/MADN: 3% DSA-Ph (25 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm),最大亮度為11300 cd/m2,最高效率為9.15 cd/A,色座標 (CIE)在4V (0.28, 0.35)與8V (0.20, 0.30)。此一元件架構在此四種不同結構的色轉換層下,都有色穩定度不佳的情況產生,我們發現色轉換層的光激發光強度有隨著時間下降的現象,此現象我們推測是元件色穩定度不佳的重要因素之一。
為了改善色轉換層發光強度隨時間下降的問題,我們成長色轉換介於陽極與電洞傳輸層之間,分別使用單一薄膜DCJTB或Rubrene
為色轉換層。在此一元件架構的實驗中,我們發現使用Rubrene為色轉換層的元件相對於使用DCJTB為色轉換層而言,在電流密度不會有明顯的下降,在亮度與電流轉換效率的表現也較高。我們得到此一架構之最佳化的白光元件為PET/ITO/Rubrene (500 nm)/NPB (40 nm)/MADN: 3% DSA-Ph (25 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm),最大亮度為5400 cd/m2,最高效率為3.3 cd/A,色座標在4V (0.28, 0.32)與8V (0.25, 0.29)。相對於前一架構而言,色穩定度已經有所改善,表示色轉換層之光激發強度隨著間減弱的問題已經改善,但仍未達到高色穩定度的表現,因此我們考慮其他的影響因素。
從元件結構之能階來看,我們發現LUMO能階未能有效的阻擋電子,使得電子在施加偏壓下有相當高的機率在色轉換層中與電洞再結合,使得色轉換層有電激發光的現象發生,我們推測DCJTB與Rubrene此二種常見的發光摻雜物形成薄膜時,電激發光進而使得色轉換層產生發光淬熄。為了改善此一問題,我們使用有電子阻擋效果的材料Ir(ppz)3,其LUMO能階為1.6 eV。我們使用兩種不同方式來得到阻擋電子的效果,分別為將Ir(ppz)3形成單一薄膜於電洞傳輸層與發光層之間,以及將Ir(ppz)3摻雜於電洞傳輸層中。在使用Ir(ppz)3後,由於電子被有效的阻擋,元件的電流密度、亮度與電流效率下降。我們得到最佳化的白光結構為PET/ITO/NPB: 5% Ir(ppz)3 (30 nm)/MADN: 3% DSA-Ph (25 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm),最大亮度為1170 cd/m2,最高效率為1.81 cd/A,色座標在6V (0.27, 0.28)與12V (0.26, 0.28),達到以藍光有機發光元件結合色轉換層之高色穩定性白光有機發光元件。
In this thesis, we investigated white organic light-emitting devices (WOLEDs) which with good color stability by coupling blue organic light-emitting device (BOLED) with color conversion layer (CCL). BOLED was electro-luminesced after we applied bias voltages, CCL absorbed energy of electroluminescence (EL) from BOLED and then emitted light in a form of photoluminescence (PL). This architecture of WOLEDs exhibited good color stability at different bias voltages. It must be overlapped large area between absorption spectra of CCL and emission spectra of BOLED in order to established effective photoluminescence from CCL. In our experiments, emitting layer of BOLED was consisted of host emitter (MADN) and guest emitter dopant (DSA-Ph), which was doped 3% into MADN. The electroluminescent spectra peak of BOLED were 470 nm and 494 nm, respectively, and we chose DCJTB and Rubrene as CCL due to their absorption spectra peak were 505 nm and 503 nm, which showed an obvious overlap with EL of DSA-Ph.
We used two architectures for WOLEDs, we evaporated BOLED and CCL on different sides or the same side of substrate. At first, we fabricated BOLED and evaporated CCL on other side of substrate. We used four different structures of CCL, including a DCJTB (or Rubrene) single layer, doped Rubrene in DCJTB, and evaporated Rubrene and DCJTB in sequence. In the first architecture, the optimized structure of WOLED was Rubrene (500 nm)/PET/ITO/NPB (40 nm)/MADN: 3% DSA-Ph (25 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm). The maximum of luminance and current efficiency were 11300 cd/m2 and 9.15 cd/A, color coordinates (CIE) were (0.28, 0.35) at 4V and (0.20, 0.30) at 8V. In this architecture, we observed the problem of instable color stability for four structures of CCL. For CCLs, we found the phenomenon of PL intensity decay by time, we inferred that the phenomenon was an important factor for instable color stability of WOLEDs.
We evaporated CCLs in between anode and hole transporting layer by using DCJTB or Rubrene in order to solve PL decay. We observed that current density reduced obviously for WOLEDs which used DCJTB as CCL, but it didn’t occur to WOLEDs which used Rubrene as CCL. For performances of luminance and current efficiency, WOLEDs which used Rubrene as CCL were much higher than used DCJTB as CCL. In these structures, the optimized structure of WOLED was PET/ITO/Rubrene (500 nm)/NPB (40 nm)/MADN: 3% DSA-Ph (25 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm). The maximum of luminance and current efficiency were 5400 cd/m2 and 3.3 cd/A, CIE were (0.28, 0.32) at 4V and (0.25, 0.29) at 8V. Color stability was improved opposite to the former architecture, it indicated that extent of PL decay was decreased, but not enough. According to above result, we considered other affective factors.
We found a probably factor from energy level of device structure. For LUMO energy level, no effective electron blocking ability existed in this structure. High recombination probability for electrons and holes in CCL after applied bias voltages, and then phenomenon of EL happened in CCL. As we known, DCJTB and Rubrene were common emitting dopants, we believed that emitting quench happened in CCL which used DCJTB or Rubrene as a single layer. A small molecular material, Ir(ppz)3, used to confine electrons in order to solve the EL problem of CCL, and LUMO of Ir(ppz)3 was 1.6 eV. We tried two methods to confine electrons, Ir(ppz)3 used to form a single film between hole transporting layer and emitting layer, or doped in NPB. Electrons confined affectively by using Ir(ppz)3 for above methods, current density, luminance, and current efficiency of WOLEDs decreased. In the second architecture, the optimized structure of WOLEDs was PET/ITO/NPB: 5% Ir(ppz)3 (30 nm)/MADN: 3% DSA-Ph (25 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm). The maximum of luminance and current efficiency were 1170 cd/m2 and 1.81 cd/A, CIE were (0.27, 0.28) at 6V and (0.26, 0.28) at 12V. WOLEDs with good color stability by coupling BOLED with CCL were achieved.

Chapter1 Introduction 1
1-1 Organic Electroluminescent Devices 1
1-2 Merits of White Organic Light-Emitting Devices 2
1-3 Thesis Motivation 3
Chapter 2 Organic Light-Emitting Devices 5
2-1 Organic Light-Emitting Theorems 5
2-2 Mechanism of Emitting Light 7
2-3 Measurements of Light Emission 9
2-4 Materials of Anode and Cathode 11
2-5 Design of Organic Light-Emitting Devices 12
2-6 Blue Organic Light-Emitting Device 13
2-7 White Organic Light-Emitting Devices 13
Chapter 3 Fabrication of White Organic Light-Emitting Device 15
3-1 Preparation of PET Substrate 15
3-2 Pre-Clean ITO Based on PET 15
3-3 ITO Pattern Etching 15
3-4 Thermal Evaporation of Organic Thin Film 16
Chapter 4 Experimental Results and Discussions 18
4-1 Blue Organic Light-Emitting Device 18
4-2 White Organic Light-Emitting Devices with CCL on Outer Side 18
4-2-1 Deposited DCJTB on outer side 18
4-2-2 Deposited Rubrene on outer side 19
4-2-3 Deposited DCJTB: x% Rubrene on outer side 20
4-2-4 Deposited Rubrene/DCJTB on outer side 21
4-2-5 Comparison of devices with CCL on outer side 22
4-3 White Organic Light-Emitting Devices with CCL on Inner Side 22
4-3-1 Deposited DCJTB on inner side 22
4-3-2 Deposited Rubrene on inner side 23
4-3-3 Added Ir(ppz)3 with Rubrene on inner side 24
Chapter 5 Conclusion and Future Works 27
References 29
Tables 38
Figures 49
[1] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals, Chem. Phys., vol. 38, pp. 2042, 1963.
[2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent devices with improved stability, Appl. Phys. Lett., vol. 51, pp. 913, 1987.
[3] G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices, Appl. Phys. Lett., vol. 68, pp. 2606, 1996.
[4] C. W. Tang, S. A. VanSlyke and C. H. Chen, “Electroluminescence of doped organic thin films, J. Appl. Phys., vol. 65, pp. 3610, 1989.
[5] Benjamin C. Krummacher, Vi-En Choong, Mathew K. Mathai, Stelios, Choulis, and Franky So, “Highly efficient white organic light-emitting diode, Appl. Phys. Lett., vol. 88, pp. 113506, 2006.
[6] Wenqing Zhu, QiangWang, Bo Li, Xiaowen Zhang, Lin Lu, BinWei, Jianhua Zhang and Chong Li, “A very simple and chromatic-stable white organic light-emitting diode with a colour conversion hole injection layer based on solution process, J. Phys. D: Appl. Phys., vol. 43, pp. 205102, 2010.
[7] Sang-Hwan Cho, Jeong Rok Oh, Hoo Keun Park, Hyoung Kun Kim, Yong-Hee Lee, Jae-Gab Lee, and Young Rag Do,“ Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light recycling filters, Optics Express, vol. 18, no. 2, pp. 1099, 2010.
[8] Chong Li, Bin Wei, Koji Kawaguchi, Tetsuya Saito, Hiroshi Kimura, Musubu Ichikawa, and Yoshio Taniguchi, “Low-Voltage Driving Three-Peak White Organic Light Emitting Diodes with Color Conversion Hole Injection Layer Based on Host-Guest Energy Transfer Jpn. J. Appl. Phys., vol. 46, no. 11, 2007.
[9] Qi Qing-jin, Wu Xiao-ming, Hua Yu-lin, Dong Mu-sen, and Yin Shougen, “White organic light emitting diodes with a color conversion layer, Optoelectron. Lett., vol. 6, no. 4, pp. 246, 2010.
[10] Y. B. Yuan, S. Li, Z. Wang, H. T. Xu, and X. Zhou, “White organic light-emitting diodes combining vacuum deposited blue electroluminescent devices with red surface color conversion layers, Optics Express, vol. 17, pp. 1577, 2009.
[11] Soon Ok Jeon, Kyoung Soo Yook, Chul Woong Joo, and Jun Yeob Lee, “White organic light-emitting diodes using a quantum dot as a color changing material, Journal of Industrial and Engineering Chemistry, vol. 15, pp. 602, 2009.
[12] G. Destriau, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole, J.Chem. Phys., vol. 33, pp. 587, 1963.
[13] M.Pope, H. Kallmann, and P. Magnante, “Below band-gap optical absorption in semiconductor alloys, Chem. Phys., vol. 38, pp. 2024, 1963.
[14] W. Helfrich, and W. G. Schneider, “Highly-bright white organic light-emitting diodes based on a singleemission layer, Phys. Rev. Lett., vol. 14, pp. 299, 1965.
[15] W. D. Gill, “Transient Photocurrent for Field-Dependent Mobilities, J. Appl. Phys., vol. 43, pp. 5033, 1972.
[16] E. Pinotti, A Sassella, A. Borghesi, and R. Tubino, “Efficient nondoped white organic light-emitting diodes based on electromers, Synth. Met., vol. 122, pp. 169, 2001.
[17] B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian and W. Zhu, “Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host, J. Appl. Phys. Part 1, vol. 39, pp. 1190, 2000.
[18] 陳金鑫, 黃孝文, “有機電激發光材料與元件, 五南圖書出版公司, pp. 21, 2005.
[19] M. Klessinger, and J. Michl, “Excited States and Photochemistry of Organic Molecules, VCH Publishers, New York, 1995.
[20] Y. Liu, M. S. Liu, and A. K. Y. Jen, “Organic light-emitting diode (OLED) technology: materials, devices and displaytechnologies, Acta Polym. vol. 50, pp. 105, 1999.
[21] Robert Eisberg, and Robert Resnick, “Quantum Physics of Atoms. Molecules, Solids, Nuclei, and Particles, 2nd edition., pp. 313-316, 1974.
[22] M. A. Baldo, D. F. O `Brien, Y, You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, vol. 395, pp. 151, 1998.
[23] S. M. Sze, “Physics of Semiconductor Devices, 2nd edition., pp. 65, 301, 1985.
[24] S. M. Sze, “Physics of Semiconductor Devices, 2nd edition., pp. 261, 1985.
[25] 陳金鑫, 黃孝文, “有機電激發光材料與元件, 五南圖書出版公司, pp. 35, 2005.
[26] U. Wolf, V. I. Arkhipov, and H. Bässler, “Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion, Phys. Rev. B, vol. 59, pp. 7507, 1999.
[27] S. Barth, U. Wolf, H. Bässler,P. Müller, H Riel, H. Westweber, P. F. Seidler, and W Riess, “Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2, Phys. Rev. B, vol. 60, pp. 8791, 1999.
[28] M. Kiy, I. Biaggio, M. Koehler, and P. Günter, “Thermally activated injection limited conduction in single layer N,N -diphenyl-N,N -bis(3-methylphenyl)1-1 -biphenyl-4,4 -diamine light emitting diodes, Phys. Rev. Lett., vol. 80, pp. 4366, 2002.
[29] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, “Blue-light electroluminescence from p-phenylene vinylene-based copolymers, Applied Physics Lett., vol. 61, pp. 761, 1992.
[30] 陳金鑫, 黃孝文, “有機電激發光材料與元件, 五南圖書出版公司, pp. 43, 2005.
[31] 陳金鑫, 黃孝文, “有機電激發光材料與元件, 五南圖書出版公司, pp. 44, 2005.
[32] J. Kido, M. Kimura, and K. Nagai, “Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy, Scinece., vol. 267, pp. 1332, 1995.
[33] S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, “Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories, Adv. Mater., vol. 15, pp. 1043, 2003.
[34] 陳金鑫, 黃孝文, “有機電激發光材料與元件, 五南圖書出版公司, pp. 45, 2005.
[35] J. Cui, A. Wang, N. L. Edleman, J. Ni, P.Lee, N. R. Armstrong, and T. J. Marks, “Theory of emission state of tris(8-quinolinolato)aluminum and its related compounds, Adv. Master., vol. 13, pp. 1476, 2001.
[36] F. O. Adurodija, H. Izumi, and T. Ishihar, “Comprehensive study of the film surface temperature and plasma thermokinetics during La1.85Sr0.15CuO4 deposition by laser ablation, Thin Solid Films, vol. 350, pp. 79, 1999.
[37] H. J. Kim, J. W. Bae, and J. S. Kim, “Importance of indium tin oxide surface acido basicity for charge injection into organic materials based light emitting diodes, Surf. Cont. Technol., vol. 131, pp. 201, 2000.
[38] J. Matsuo, H. Katsumata, and E. Minami, “Effect of polyatomic ion structure on thin-film growth: Experiments and molecular dynamics simulations, Nucl. Instrum. Methods Phys. Res. B, vol. 161, pp. 952, 2000.
[39] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, “Radiative recombination mechanisms in aluminum tris(8-hydroxyquinoline): Evidence for triplet exciton recombination, Journal of Luminescence, vol. 87, pp. 1165, 2000.
[40] J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, “Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance, J. Appl. Phys., vol. 84, pp. 6859, 1998.
[41] S. K. So1, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing, Appl. Phys A., vol. 68, pp. 447, 1999.
[42] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices, J. Appl. Phys., vol. 86, pp. 1688, 1999.
[43] E. I. Haskal, A. Curioni, P. F. Seidler, and W. Andreoni, “Lithium–aluminum contacts for organic light-emitting devices, Applied Physics Lett., vol. 71, pp. 1151, 1997.
[44] L. S. Hung, L. S. Liao, C. S. Lee, and S. T. Lee, “Sputter deposition of cathodes in organic light emitting diodes, J. Appl. Phys., vol. 86, pp. 4607, 1999.
[45] L. S. Hung, “Device performance and polymer morphology in polymer light emitting diodes: The control of device electrical properties and metal/polymer contact, Thin Solid Films, vol. 363, pp. 47, 2000.
[46] J. Yoon, J. Kim, T. Lee, and O. Park, “Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode, Appl. Phys. Lett., vol. 76, pp. 2152, 2000.
[47] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Appl. Phys. Lett., vol. 70, pp. 152, 1997.
[48] M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A.Winnacker, “Space-charge-limited electron currents in 8-hydroxyquinoline aluminum, Appl. Phys. Lett., vol. 76, pp. 115, 2000.
[49] S. E. Shaheen, G. E. Jabbour, M. M. Morelli, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode, J. Appl. Phys., vol. 84, pp. 2324, 1998.
[50] T. Mori, H. Fujikawa, S. Tokito, and Y. Yaga, “Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy, Appl. Phys. Lett., vol. 73, pp. 2763, 1998.
[51] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morelli, B. Kippelen, and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode, Appl. Phys. Lett., vol. 71, pp. 1762, 1997.
[52] P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, “Role of CsF on electron injection into a conjugated polymer, Appl. Phys. Lett., vol. 77, pp. 2403, 2000.
[53] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices, Appl. Phys. Lett., vol. 73, pp. 1185, 1998.
[54] H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, and Y. Taga, “Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer, J. of Lumin., vol. 87, pp. 1177, 2000.
[55] L. J. Rothberg and A. J. Lovinger, “Status of and prospects for organic electroluminescence, J. Mater. Res., vol. 11, pp. 3174, 1996.
[56] 陳金鑫, 黃孝文, “有機電激發光材料與元件, 五南圖書出版公司, pp. 39, 2005.
[57] A. L. Burin, and M. A. Ratner, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters, J. Phys. Chem. A, vol. 104, pp. 4704, 2000.
[58] Silu Tao, Ziryo Hong, Zhaokuai Peng, and Wwigang Ju, “Anthracene derivative for non-doped blue-emitting organic electroluminescence device with both exllent color purity and high efficiency, Chem. Phys. Lett., pp. 397, 2004.
[59] M. T. Lee, Y. S. Wu, H. H. Chen, C. T. Tsai, C. H. Liao, and C. H. Chen, “Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from Rubrene-doped 4,48-bis.2,28-diphenylvinyl.-1 ,18-biphenyl, Proceedings of SID’04, pp.720, May 23-28, 2004, Seattle, Washington, USA.
[60] Yu Yang, Tai Peng, Kaiqi Ye, Ying Wu, Yu Liu, and Yue Wang, “High-efficiency and high-quality white organic light-emitting diode employing fluorescent emitters, Organic Electronics, vol. 12, pp. 29, 2011.
[61] Baohua Zhang, Guiping Tan, Ching-Shan Lam, Bing Yao, Cheuk-Lam Ho, Lihui Liu, Zhiyuan Xie, Wai-Yeung Wong, Junqiao Ding, and Lixiang Wang, “High-Effi ciency Single Emissive Layer White Organic Light-Emitting Diodes Based on Solution-Processed Dendritic Host and New Orange-Emitting Iridium Complex, Advanced Materials, vol. 24, pp. 1873, 2012.
[62] Shanfeng Xue, Liang Yao, Fangzhong Shen, Cheng Gu, Hongbin Wu, and Yuguang Ma, “Highly Efficient and Fully Solution-Processed White Electroluminescence Based on Fluorescent Small Molecules and a Polar Conjugated Polymer as the Electron-Injection Material, Adv. Funct. Mater., vol. 22, pp. 1092, 2012.
[63] Meng-Ting Lee, Miao-Tsai Chu, Jin-Sheng Lin and Mei-Rurng Tseng, “Host-free, yellow phosphorescent material in white organic light-emitting diodes, J. Phys. D: Appl. Phys., vol. 43, pp. 442003, 2010.
[64] Sang Eok Jang, Kyoung Soo Yook, and Jun Yeob Lee, “Simplified white phosphorescent organic light-emitting diodes without any charge transport layer, Current Applied Physics, vol. 11, pp. 865, 2011.
[65] Fangchao Zhao, Zhiqiang Zhang, Yipeng Liu, Yanfeng Dai, Jiangshan Chen, and Dongge Ma, “A hybrid white organic light-emitting diode with stable color and reduced efficiency roll-off by using a bipolar charge carrier switch, Organic Electronics, vol. 13, pp. 1049, 2012.
[66] Shiming Zhang, Guohua Xie, Qin Xue, Zhensong Zhang, Li Zhao, Yang Luo, Shouzhen Yue, Yi Zhao, and Shiyong Liu, “All fluorescent and high color rendering index white organic light-emitting devices with improved color stability at high brightness, Thin Solid Films, vol. 520, pp. 2966, 2012.
[67] Akiyoshi MIKAMI, Tatsuya KOSHIYAMA and Tetsuro TSUBOKAWA, “High-Efficiency Color and White Organic Light-Emitting Devices Prepared on Flexible Plastic Substrates, Jpn. J. Appl. Phys., vol. 44, no. 1B, 2005.
[68] Jwo-Huei Jou, Chung-Pei Wang, Ming-Hsuan Wu, Hung-Wei Lin, Han Chang Pan and Bo-Heng Liu, “High-efficiency flexible white organic light-emitting diodes, J. Mater. Chem., vol. 20, pp. 6626-6629, 2010.
[69] Wun-Shing Syu, Sheng-Chia Lin, Shin-Rong Tseng, Chun-Yu Chen, Chang-Yao Liu, Yu-Chiang Chao, Hsin-Fei Meng, and Sheng-Fu Horng, “Efficient multilayer red fluorescent polymer light-emitting diodes by host and guest blend system, Synthetic Metals, vol. 160, pp. 871-875, 2010.
[70] Jwo-Huei Jou, Po-Hsien Wu, Chun-Hao Lin, Ming-Hsuan Wu, Yi-Chieh Chou, Hsi-Ching Wang and Shih-Ming Shen, “Highly efficient orange-red organic light-emitting diode using double emissive layers with stepwise energy-level architecture, J. Mater. Chem., vol. 20, pp. 8464-8466, 2010.
[71] Junsheng Yu, Juan Zhao, Lei Zhang, and Jian Zhong, “Effect of different spacers for performance enhancement on white organic light-emitting devices based on double emissive layers with homogeneous p-/n-type host, Current Applied Physics, vol. 12, pp. 1212, 2012.
電子全文 電子全文(網際網路公開日期:20220101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top