跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國弘
研究生(外文):Kuo-HungLee
論文名稱:一種簡易的氧化製程製作具鈍化層和金氧半結構之氮化鋁鎵/氮化鎵高電子遷移率電晶體
論文名稱(外文):A Simple Oxidation Process for AlGaN/GaN Passivated Metal-Oxide-Semiconductor High Electron Mobility Transistor
指導教授:許渭州
指導教授(外文):Wei-Chu Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:79
中文關鍵詞:高電子遷移率電晶體氮化鋁鎵/氮化鎵金屬-氧化物-半導體氧化處理
外文關鍵詞:high electron mobility transistorAlGaN/GaNoxidation processmetal-oxide-semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種利用過氧化氫(雙氧水)表面處理的方法製作具有鈍化層和金屬-氧化層-半導體的高電子遷移率電晶體。此方法提供了快速、低成本、簡單製程且有效提升元件的特性。雙氧水具有很強的氧化能力,可以氧化氮化鋁鎵表面,以形成氧化層。
實驗結果顯示,經過雙氧水處理7分30秒後,可以改善元件的直流、微波特性和可靠度。閘極不加偏壓時的最大汲極電流,從 337 mA/mm提升到 552 mA/mm;最大轉導值,從 114.9 mS/mm 提升到 135.9 mS/mm;崩潰電壓,從 -79 V 提升到 -132 V;電流增益截止頻率,從 10.52 GHz 提升到 16.14 GHz;最大震盪頻率,從 13.5 GHz 提升到 18.42 GHz;在 2.4 GHz下的最小雜訊,從 2.522 dB 減少到 1.59 dB;在 5.8 GHz下的最小雜訊,從 4.97 dB 減少到 3dB;在 2.4 GHz下的最大輸出功率,從 23.03 % 提升到 33.36 %;在 5.8 GHz下的最小雜訊,從 9.7 % 提升到 16.38 %;虎格係數由 4.33×10-3 減少到 7.49×10-5 ,代表降低了載子在傳輸中受到陷阱捕捉或釋放的機率。在可靠度測試上,在閘極施加-10V的偏壓持續5天,沒有雙氧水氧化製程的元件的最大轉導值會下降40%(跟未施加偏壓的比較),有雙氧水氧化製程的元件的最大轉導值會下降19%。在脈衝電流-電壓量測上,有雙氧水製程氧化的元件在DC模式和脈衝模式比較上有較小的電流不一致情況,表示改善了RF電流崩潰的現象。
In this work, we present a surface treatment of hydrogen peroxide to fabricate a passivated and metal-oxide-semiconductor high electron mobility transistors. The advantages of this method are fast, low cost, simple process and improve the device characteristics effectively. Hydrogen peroxide has a strong oxidation capability, it can oxidize the surface of AlGaN to form the surface oxide layer.
Experiment results indicate that the oxidation process can improve devices DC, microwave characteristics and reliability. The saturation drain current density (IDSS0) was improved from 337 mA/mm to 552 mA/mm; the maximum extrinsic transconductance (gm,max) was improved from 114.9 mS/mm to 135.9 mS/mm; the breakdown voltage (BVGD) was improved from -79 V to -132 V; the unity current gain cut-off frequency (fT) was improved from 10.52 GHz to 16.14 GHz; the maximum oscillation frequency (fmax) was improved from 13.5 GHz to 18.42 GHz; the minimum noise figure (NFmin) at 2.4 GHz was improved from 2.52 dB to 1.59 dB; the minimum noise figure (NFmin) at 5.8 GHz was improved from 4.97 dB to 3 dB; the Hooge’s coefficient was improved from 4.33×10-3 to 7.49×10-5, the value indicated that reducing the carrier transmission by trap or de-trap. In reliability test, the degeneration of gm,max was 40 % for the device without H2O2 oxidation process and 19 % for the device with H2O2 oxidation process after the gate stress (VG= -10 V) for five days. In pulse current-voltage measurement, smaller current discrepancy between the DC mode and the pulse mode is found in the device with H2O2 oxidation process, it indicates that the problem of RF current collapse is improved.
Abstract (Chinese).........................................I
Abstract (English).......................................III
Table Captions............................................IX
Figure Captions............................................X
Chapter 1 Introduction.....................................1
Chapter 2 AlGaN/GaN Heterostructure........................6
2-1 GaN Semiconductors....................................6
2-2 AlGaN/GaN Heterostructure.............................8
Chapter 3 Materials Growth and Devices Fabrication........10
3-1 Epitaxy Structure....................................10
3-2 Fabrication Process..................................10
3-2-1 Mesa Isolation....................................11
3-2-2 Source and Drain Ohmic Contact....................12
3-2-3 H2O2 Oxidation Process............................13
3-2-4 Gate Schottky Contact.............................13
3-3 Metal-Insulator-Semiconductor (M-I-S) Diode and Metal-Semiconductor (M-S) Diode Fabrication................14
3-3-1 Mesa Isolation....................................15
3-3-2 Ohmic Contact.....................................15
3-3-3 H2O2 Oxidation Process and Schottky Contact.......15
Chapter 4 Results and Disscussion.........................16
4-1 Capacitance-Voltage Characteristics..................16
4-2 Hall Measurement.....................................18
4-3 DC Characteristics...................................19
4-3-1 Output Characteristics............................19
4-3-2 Transfer Characteristics..........................20
4-3-3 Gate-Drain Breakdown and Turn-On Characteristics..................................................21
4-4 Temperature-Dependent DC Characteristics.............22
4-4-1 Temperature-Dependent Output Characteristics......22
4-4-2 Temperature-Dependent Transfer Characteristics....24
4-4-3 Temperature-Dependent Gate-Drain Breakdown Voltage..................25
4-5 Pulse Current-Voltage Measurment.....................27
4-6 Microwave Characteristics............................29
4-7 Power Characteristics................................32
4-8 Noise Characteristics................................34
4-8-1 High Frequency Noise Characteristics..............35
4-8-2 Low Frequency Noise Characteristics...............36
4-9 Reliability Test.....................................37
Chapter 5 Conclusion......................................41
References................................................44
Figures...................................................51
[1]N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure, IEEE Electron Device Lett., vol. 21, no. 9, pp. 421-423, 2000.
[2]Y.-F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra and P. Parikh, “30-W/mm GaN HEMTs by field plate optimization, IEEE Electron Device Lett., vol. 25, no. 3, pp. 117-119, Mar. 2004.
[3]I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, and E. Kohn, “Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs, IEEE Electron Device Lett., vol. 20, no. 9, pp. 448-450, Sep. 1999.
[4]Y. Dora, S. Han, D. Klenov, P. J. Hansen, K. S. No, U. K. Mishra, S. Stemmer, J. S. Specj, “ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors, J. Vac. Sci. Technol. B, vol. 24, no. 2, pp. 575-581, Mar./Apr. 2006.
[5]M. A. Kahn, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Sher, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates, Appl. Phys. Lett., vol. 77, no. 9, pp. 1339-1341, Aug. 2000.
[6]E. J. Miller. X. Z. Dang, and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors, J. Appl. Phys., vol. 88, no. 10, pp. 5951-5958, Nov. 2000.
[7]C. Liu, E. F. Chor, and L. S. Tan, “Enhanced device performace of AlGaN/GaN HEMTs using HfO2 high-k sielectric for surface passivation and gate oxide, Semicond. Sci. Technol., vol. 22, no. 5, pp. 522-527, 2007.
[8]J. Kuzmik, J. F. Carlin, M. Gonschorek, A. Kostopoulos, G.Konstantinidis, G. Pozzovivo, S. Golka, A. Georgakilas, N. Grandjean, G. Strasser, and D. Pogany, “Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs, Phys. Stat. Sol. (a), vol. 204, no. 6, pp. 2019-2022, 2007.
[9]S. L. Selvaraj, and T. Egawa, “Oxygen plasma treated aluminum as a gate dielectric for AlGaN/GaN high electron mobility transistors, J. Electronchem. Soc., vol. 156, issue 9, pp. H690-H693, 2009.
[10]H. C. Chiu, C. W. Lin, C. H. Chen, C. W. Yang, C. K. Lin, J. S. Fu, L. B. Chang, R. M. Lin, and K. P. Hsueh, “Low hysteresis dispersion La2O3 AlGaN/GaN MOS-HEMTs, J. Electrochem. Soc., vol. 157, no. 2, pp. H160-H164, 2010.
[11]T. P. Chow, and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, Aug. 1994.
[12]P. D. Te, B. Yang, K. K. Ng, J. Bude, G. D. WilK, S. Halder, and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric, Appl. Phys. Lett., vol. 86, no. 06, pp. 063501-1-063501-3, 2005.
[13]Y. Z. Yue, Y. Hao, Q. Feng, J. C. Zhang, X. H. Ma, and J. Y. Ni, “GaN MOS-HEMT using ultrathin Al2O3 dielectric grown by atomic layer deposition, Chin. Phys. Lett., vol. 24, no. 8, pp.2419-2422, Aug. 2007.
[14]C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors, Appl. Phys. Lett., vol. 88, no. 9, pp. 173504-1-173504-3, Apr. 2006.
[15]P. Kordoš, D. Gregušová, R. Stoklas, K. Čičo, and J. Novák, “Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure, Appl. Phys. Lett., vol. 90, no. 12, pp. 123513-1-123513-3, 2007.
[16]S. Basu, P. K. Singh, P. W. Sze, and Y. H. Wang, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric, J. Electrochem. Soc., vol. 157, no. 10, pp. H947-H951, Aug. 2010.
[17]J. Kuzmik, G. Pozzovivo, S. Abermann, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, E. Bertagnolli, G. Strasser, and D. Pogany, “Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2, IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 937-941, Mar. 2008.
[18]T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMT with liquid-phase-deposited TiO2 as gate dielectric, IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2911-2916, Dec. 2009.
[19]F. Tian, and E. F. Chor, “Improved electrical performance and thermal stability of HfO2/Al2O3 bilayer over HfO2 gate dielectric AlGaN/GaN MIS-HFETs, J. Electrochem. Soc., vol. 157, no. 5, pp. H557-H561, 2010.
[20]H. Kambayashi, Y. Satoh, S. Ootomo, T. Kokawa, T. Nomura, S. Kato, and T. P. Chow, “Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HEFT on Si substrate with high-breakdown voltage, Solid-State Electron., vol. 54, no. 6, pp. 660-664, Jun. 2010.
[21]Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors, IEEE Electron Device Lett., vol. 31, no. 3, pp. 183-185, Mar. 2010.
[22]Z. Dong, J. Wang, C. P. Wen, D. Gong, Y. Li, M. Yu, Y. Hao, F. Xu, B. Shen, and Y. Wang, “High breakdoen AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti as gate insulator, Solid-State Electron., vol. 54, issue 11, pp. 1339-1342, 2010.
[23]S. A. Campbell, “The science and engineering of microelectronic fabrication 2nd edition, Oxford University Press, New York, 2001.
[24]R. Doering, and Y. Nishi, “Handbook of semiconductor manufacturing technology 2nd edition, CRC press, Florida, 2007.
[25]J. I. Pankove, and T. D. Moustakas, “Gallium Nitride (GaN) II, Academic press, New York, pp. 15-21, 1999.
[26]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films, Appl. Phys. Lett., vol. 68, no.5, pp. 643-645, Jan. 1996.
[27]G. Landwehr, A. Waag, F. Fischer, H. J. Lugauer, K. Schüll, “Blue emitting heterostructure laser diodes, Physica E, vol. 3, issue 1-3, pp. 158-168, 1998.
[28]T. B. Wang, “Improved Nitride-based Optical and Electrical Devices, Ph.D. Thesis, National Cheng-Kung University, 2007.
[29]S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III-nitrides: growth, characterization, and properties, J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, 2000.
[30]D. F Storm, D. S. Katzer, S. C. Binari, B. V. Shanabrook, X. Xu, D. S. McVey, R. P. Vaudo, and G. R. Brandes, “Room temperature Hall mobilities above 1900cm2/Vs in MBE-grown AlGaN/GaN HEMT structures, Electronics Letters, vol. 40, no. 19, pp. 1226-1227, Sep. 2004.
[31]D. A. Neamen, “Semiconductor physics and devices: basic principles 3rd ed., Mc Graw Hill, New York, pp. 351-354, 2003.
[32]F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs, IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001.
[33]J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, and J. B. Webb, “Microstructural analysis of Ti/Al/Ti/Au ohmic contact to n-AlGaN/GaN, J. Vac. Sci. Technol. A, vol. 20, no. 3, pp. 1004-1010, 2002.
[34]D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. S. Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN, J. Appl. Phys., vol. 89, no. 11, pp. 6214-6217, Jun. 2001.
[35]N. Chaturvedi, U. Zeimer, J. Wurfl, and G. Trankle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors, Semicond. Sci. Technol., vol. 21, no. 2, pp. 175-179, Jan. 2006.
[36]D. K. Schroder, “Semiconductor materials and device characterization, 3rd ed., Wiley-Interscience, New York, pp. 61-78 , 2006.
[37]E. H. Nicollian, and J. R. Brews, “MOS physics and Technology, John Wiley & Sons, New York, pp. 333-356, 1982.
[38]J. J. Freedsman, T. Kubo, S. L. Selvaraj, and T. Egawa, “Suppression of gate leakage and enhancement of breakdown voltage using thermally oxidized Al layer as gate dielectric for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors, Jpn. J. Appl. Phys., vol. 50, issue 4, pp. 04DF03-1-04DF03-4, 2011.
[39]J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, Appl. Phys. Lett., vol. 77, no. 2, pp. 250-252, Jul. 2000.
[40]M. Marso, G. Heideberger, K. M. Indlekofer, J. Bernát, A. Fox, P. Kordoš, and H. Lüth, “Origin of improved RF performance of AlGaN/GaN MOSHFETs compared to HFETs, IEEE Trans. Electron Devices, vol. 53, no. 7, pp. 1517-1523, Jul. 2006.
[41]J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, P. Kordoš, “Investigation of self-heating effects in AlGaN/GaN HEMTs, Proceedings EDMO, Vienna, pp. 21-26, 2001.
[42]D. W. DiSanto, and C. R. Bolognesi, “At-bias extraction of access parasitic resistance in AlGaN/GaN HEMTs: impact on device linearity and channel electron velocity, IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2914-2919, Dec. 2006.
[43]A. M. Wells, M. J. Uren, R. S. Balmer, K. P. Hilton, T. Martin, and M. Missous, “Direct demonstration of the ‘virtual gate’ mechanism for current collapse in AlGaN/GaN HFETs, Solid-State Electron., vol. 49, issue 2, pp. 279-282, 2005.
[44]J. Kuzmik, S. Bychikhin, M. Neuburger, A. Dadgar, A. Krost, E. Kohn, and D. Pogany, “Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon, IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1698-1705, Aug. 2005.
[45]F. Ellinger, “Radio frequency integrated circuits and technologies, Springer, Dresden, pp. 61-82 and 287-357, 2007.
[46]L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-power polarization-engineered GaN/AlGaN/GaN HEMTs without surface passivation, IEEE Electron Device Lett., vol. 25, no. 1, pp. 7-9, Jan. 2004.
[47]W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs, Solid-State Electron., vol. 46, issue 9 , pp. 1441-1444, 2002.
[48]F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise, Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, 1981.
[49]Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, and T. Mizutani, “Effects of surface passivation on breakdown of AlGaN/GaN high-electron-mobility transistors, Appl. Phys. Lett., vol. 84, no. 12, pp. 2184-2186, Mar. 2004.
[50]H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “Novel oxide-passivated AlGaN/GaN HEMT by using hydrogen peroxide treatment, IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4430-4433, Dec. 2011.
[51]C. T. Lee, Y. L. Chiou, and C. S. Lee, “AlGaN/GaN MOS-HEMT with gate ZnO dielectric layer, IEEE Electron Device Lett., vol. 31, no. 11, pp. 1220-1223, Nov. 2010.
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 高壓氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析
2. 矽基板之氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究
3. 表面鈍化對氮化鋁鎵/氮化鎵高電子遷移率電晶體之影響
4. 利用有機金屬化學氣相沉積成長高功率氮化鋁鎵/氮化鎵高電子遷移率電晶體結構於藍寶石基板
5. 應用液相沉積法沉積高介電材料並研製氮化鋁鎵/氮化鎵金氧半高電子移動率電晶體
6. 結合表面鈍化層與後退火技術增強氮化鎵金-氧-半高電子遷移率電晶體之性能
7. 具有氧化鑭/氧化鋁閘極介電層之金屬-氧化物-半導體氮化鋁鎵/氮化鎵高電子遷移率電晶體之研製
8. 氮化鋁鎵/氮化鎵高電子遷移率電晶體非線性特性之研究
9. 氮化鋁中間層對氮化鋁鎵/氮化鎵高電子遷移率電晶體的特性影響
10. 浮動蕭特基金屬線應用在高頻氮化鋁鎵/氮化鎵高電子遷移率電晶體之製作與分析
11. 具Γ型閘極GaN元件之研究
12. 藉由臭氧水氧化製程研製具有金屬-氧化物-半導體閘極結構之氮化鋁鎵/氮化鋁/氮化鎵高電子遷移率電晶體
13. 以電漿輔助式分子束磊晶成長應用於高電子遷移率電晶體之氮化鋁鎵/氮化鎵異質結構
14. 利用過氧化氫對氮化鋁鎵/氮化鎵高電子遷移率電晶體鈍化處理之研究
15. 藉由臭氧水氧化製程研製具有金屬-氧化物-半導體閘極結構及氧化物鈍化層之砷化鋁鎵/砷化銦鎵擬晶式高電子遷移率電晶體
 
無相關期刊