跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅炎國
研究生(外文):Yean-KuoLuo
論文名稱:性能提升之電流式升壓型轉換器使用時脈多工電流平衡機制之錯相位架構及窗式暫態加快技術
論文名稱(外文):Performance Improvement in Current Mode Boost DC-DC Converter by Time-Multiplexing Current Balance Interleaved Topology and Window Transient Enhancement Technique
指導教授:許渭州
指導教授(外文):Wei-Chou Hsu
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:84
中文關鍵詞:升壓型轉換器時脈多工電流平衡機制窗型暫態加快技術過電壓抑制技術
外文關鍵詞:DC-DC boost converterfast transient techniquetime-multiplexing current balancewindow transient enhancement topologyOvershoot suppression technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:1
近年來,由於直流–直流轉換器的高效率及容易控制的優點,降壓型轉換器、升壓型轉換器、升降兩用型轉換器及其相關的直流–直流轉換器,在電力轉換系統上大量使用。
理論上,升壓型轉換器的系統頻寬通常設計成十分之一或十五分之一的操作頻寬去得到最佳化的暫態響應。 然而,當負載、工作周期寬度比、電感感值上升時,右半平面零點會移往低頻,進而靠近系統的交越頻率。當右半平面零點越靠近系統交越頻率時,系統的相位及穩定度會越來越差。換言之,傳統的升壓型轉換器的系統頻寬常會受限於右半面零點的位置。此外,升壓型轉換器仍會遭遇到暫態響應不好的問題,當升壓型轉換器操作區間為位於連續電流區間及不連續電流區之間變換的時候。
本文提出的一時脈多工的電流平衡電流式升壓轉換器可移動右半平面零點至較高的頻率去得到較好的暫態響應。此外,轉換器的小訊號分析亦將轉換器間的互相干擾效應、偏差效應及電流平衡機制納入考慮。
另一方面,除了考慮最大頻寬及右半平面零點的效應,當轉換器操作在電感電流連續和不連續的模式時亦會遭遇到暫態響應不佳的情況,為此本文亦提出一窗型暫態加快及過電壓抑制技術去改善轉換器的性能。此技術可以應用,在當負載是由無載到重載或是由重載到無載的狀況。
實驗結果顯示本文所提出的時脈多工電流機制可有效平衡兩電感間之電流不平衡且電流平衡電流式升壓轉換器的兩個子轉換器可穩定操作在5 MHz的操作頻率。本文所提出的電流式錯相式升壓轉換器可有效的降低其趨穩時間從52微秒至22微秒。
而在暫態加快技術方面,窗型暫態加快及過電壓抑制技術亦可有效改善暫態響應和過電壓現象。實驗結果顯示,比之傳統式電流式,升壓器使用暫態加快技術的電流式升壓器可改善電壓降達62%,電壓過衝達51%,當負載電流變化範圍是400mA時。使用暫態加快技術的犧牲是約需多耗費4.5%的面積去達成。

In this dissertation, a time-multiplexing current balance (TMCB) current-mode boost converter is proposed to improve the transient performance. In theory, the maximum bandwidth of a boost converter can be set to one-tenth or one-fifteenth of the switching frequency to obtain the best transient performance and stability. However, when the output load, duty ratio, and inductor value are increased, the right-half-plane (RHP) zero moves towards low frequencies, and thus, towards the crossover frequency, ωT. The phase margin and the system stability are influenced considerably by the low-frequency RHP zero. This means that the transient performance of a conventional boost converter is degraded due to a limited bandwidth.
The proposed TMCB boost converter extends its bandwidth and moves the RHP zero to a higher frequency to improve the transient performance using two inductors in one channel. Besides, the small signal model of dual phase system which considers cross-couple effect and offset correction is presented. The proposed converter requires an extra inductor and a slight increase in the size of the printed circuit board layout and die size. Using time multiplexing, two inductors were operated in an interleaved phase at a switching frequency of 5 MHz rather than a single inductor system operated at a switching of 10 MHz for the same ripple required. Experimental results show that the TMCB technique is effective in correcting the mismatch in the current of the inductors even if the difference between the inductors is large. Furthermore, the proposed converter can improve the settling time from 52 µs to 22 µs due to an extended bandwidth.
Aside form the elimination of the RHP zero effect, a slow transient response should be met when the converter operates from Discontinuous Conduction Mode (DCM) to Continuous Conductor Mode (CCM) and when the load changes from light to heavy load. Thus, window transient enhancement topology (WTE) and Overshoot suppression technique (OSS) are published to sharpen the transient performance of a current mode boost converter. These techniques can improve the transient performance when the load is changed from light to heavy or vice versa.
In addition, the experimental results were compared using a conventional boost converter, wherein the use of the WTE method and OSS technique can improve the settle time and overshoot performances efficiently. The experimental results show that the use of transient enhancement technique has reduced the drop voltage by about 62% and the overshoot voltage by about 51% when the load current has a load step of 400 mA, compared with the use of a conventional current mode boost converter. Moreover, the settling time has improved to 43%, which is better than that in the conventional case of a 400 mA load current step. The overhead of the silicon area in achieving the overshoot reduction is approximately 4.5%.

Chinese Abstract...I
Abstract...III
Acknowledgement...V
Contents...VII
List of Figures...IX
List of Tables...XIII
List of Symbols and Abbreviations...XIV
Chapter 1 Introduction...1
1.1 Background...1
1.2 Prior arts...7
1.2.1 RHP zero elimination...7
1.2.2 Fast transient techniques...10
1.3 Motivation...13
1.4 Organization...13
Chapter 2 The operation of interleaved boost converter with the TMCB...15
2.1 Compensation design for extending the bandwidth...17
2.2 Operation of the proposed TMCB technique for current balance...19
2.3 Output ripple consideration...20
Chapter 3 Small single model...24
3.1 Simple power stage model...24
3.2 Power stage model with unequal duty cycle...30
3.3 Controller model and transfer function of the proposed converter...31
Chapter 4 Window transient enhancement and overshoot suppression techniques...44
4.1 WTE and OSS techniques...44
4.2 Operation of the WTE technique...46
4.3 Operation of the OSS technique...48
Chapter 5 Circuit implementations...54
5.1 Circuit implementation of TMCB technique...54
5.2 Circuit implementation of WTE and OSS techniques...57
Chapter 6 Experimental results...61
6.1 Experimental results of a TMCB current mode boost converter...61
6.2 Experimental results of a boost converter with WTE and OSS techniques...66
Chapter 7 Conclusion...75
7.1 Conclusion...75
7.2 Future works...75
Reference...77

[1]Robert. W. Erickson, and Dragan Maksimoic, Fundamentals of Power Electronics, second edition, Kluwer academic publishers, 2001.
[2]Dan M. Sable, Bo H. Cho, and Ray B. Ridley, “Elimination of the positive zero in fixed frequency boost and flyback converter, IEEE Applied Power Electronics Conference and Exposition, pp. 205-211, March 1990.
[3]Viswanathan K., Oruganti R., and Srinivasan D., “Tri-state Boost Converter With No Right Half Plane Zero, IEEE Int. Conf. Power Electronics and Drive System, Vol. 2, pp.687-693, October 2001.
[4]Dongsheng Ma, and Wing-Hung Ki, “Fast Transient PCCM Switching Converter with FreeWheel Switching Control, IEEE Transaction on Circuit and System II, vol.54, no. 4, pp.825-829, September 2007.
[5]Wei-Chung Wu, Richard M. Bass, and Jerry R. Yeargan, “Eliminating the Effects of the Right-Half Plane Zero in Fixed Frequency Boost Converters, IEEE Power Electronics Specialists Conf., vol. 1, no. 6, pp.362-366, May 1998.
[6]D. Diaz, O. Garcia, J. A. Oliver, P. Alout, and J. A. Cobos, “Analysis and Design Considerations for the Right Half-Plane Zero Cancellation on a Boost Derived dc/dc Converter, IEEE Power Electronics Specialists Conf., no. 6. pp. 3825-3828, June 2008.
[7]Osama Abdel-Rahman, and Issa Batarseh, “Transient Response Improvement in DC-DC Converters Using Output Capacitor Current for Faster Transient Detection, IEEE Power Electronic Specialists Conf., pp. 157-160, June 2007.
[8]S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Fast Response DC/DC Converter with Transient Suppression Circuit, IEEE Power Specialists Conf. pp. 1-5, June 2006.
[9]Pang-Jung Liu, Huang-Jen Chiu, Yu-Kang Lo, and Yi-Jan Chen, “A Fast Transient Recovery Module for DC-DC Converters IEEE Trans. Industrial Electronics, vol. 56, no. 7, pp.2522-2529, July 2009.
[10]Yu-Huei Lee, Shih-Jung Wang, and Ke-Horng Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter with small ESR Capacitor, IEEE Trans. Power Electronics, vol. 25, no. 4, pp.829-838, April 2010.
[11]Fengyan Wang, Jianping Xu, and Bin Wang, “Comparison Study of Switching DC-DC Converter Control Techniques, in Proc. IEEE Int. Conf. Communications. Circuit and System, vol. 4, pp. 2713-2717, June 2006.
[12]Yuan Yen Mai, and Philip K. T. Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Larger ESR Capacitor, IEEE Trans. Circuit Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 748-752, Aug. 2008.
[13]Redl R., and Jian Sun, “Ripple-Based Control of Switching Regulators-An Overview, IEEE Trans. Power Electronics, vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[14]Song Qu, “Modeling and design considerations of V2 controlled buck regulator IEEE Appl. Power Electronics Conf., pp.507-513, 2001
[15]Jen-Chieh Tsai, Chi-Lin Chen, Yu-Huei Lee, Hong-Yuan Yang, Ming-Shen Hsu, and Ke-Horng Chen, “Modified Hysteretic Current Control for improving Transient Response of Boost Converter, IEEE Trans. Circuit and Systems I, vol. 58, no. 10, Oct. 2011.
[16]Chunming Zhang, and Zhibiao Shao, “Controlled Slew Rate Enhancement Circuit for Error Amplifier in High Frequency DC-DC Converters, IEEE Asia Pacific Conf. Circuit Syst., pp. 1852-1855, Nov. 2008.
[17]Hung-Chih Lin, Bou-Ching Fung, and Tsin-Yuan Chang, “A Current Mode Adaptive On-Time Control Scheme for Fast Transient DC-DC Converters, IEEE Int. Symp. Circuit Syst., pp. 2602-2605, May, 2008.
[18]A. Barrado, R. Vazquez. Lazaro, J. Pleite, J. Vazquez, and E. Olias, “Stability Analysis of Linear-Non Linear Control (LnLe) Applied to Fast Transient Response DC-DC Converter, IEEE Appl. Power Electronics Conf., pp.1329-1335, Feb. 2004.
[19]Chun-Yu Hsieh and Ke-Horng Chen, “Adaptive Pole-Zero Position (APZP) Technique of Regulated Power Supply for Improving SNR, in IEEE Transaction on Power Electronics, vol. 23, no. 6, pp. 2949-2963, Nov. 2008.
[20]P. Thounthong, P. Sethakul, S. Rael, and B. Davat, “Design an Implementation of 2-Phase Interleaved Boost Converter for Fuel Cell Power Source, IEEE Int. Conf. Power electronics, Machines and Drives, pp. 91-95, April 2008.
[21]Haiping Xu, Xuhui Wen, and Li Kong, “ Dual-Phase DC-DC Converter in Fuel Cell Electric Vehicle, IEEE Power Electronics Congress, vol. IE-30, no. 6, pp. 19-29, October 2004.
[22]Slobodan Cuk, and R. D. Middlebrook, Advances in Swithced-Mode Power Conversion Part I IEEE Transactions on Industrial Electronics, vol. IE-30, no. 6, pp. 10-19, Feb. 1983.
[23]Slobodan Cuk, and R. D. Middlebrook, Advances in Swithced-Mode Power Conversion Part II, IEEE Transactions on Industrial Electronics, vol. 30, no. 1, pp. 19-29, Feb. 1983.
[24]R. D. Middlebrook, “Topics in Multiple-Loop Regulators and Current-Mode Programming, IEEE Transactions on Power Electronics, vol. PE2, no. 2, pp.109-124, Apr. 1987.
[25]R. D. Middlebrook, “Modeling Current-Programmed Buck and Boost Regulators IEEE transactions on Power Electronics, vol. 1, no. 1, pp. 36-52, Jan. 1989.
[26]Vatche Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode, IEEE Transactions on Aerospace and Electronic System, vol. 26, no. 3, pp. 490-496, May 1990.
[27]F. Dong Tan, and R. D. Middlebrook, “Unified Modeling and Measurement of Current-Programmed Converters, IEEE Power Electronics Specialists Conference, no. 2, pp. 380-387, June 1993.
[28]Jian Sun, and Richard M. Bass, “A New Approach to Averaged Modeling of PWM Converters with Current-Mode Control, IEEE Transactions on Industrial Electronics, Control and Instrumentation, vol. 2, no. 6, pp. 599-604, Nov.1997.
[29]Raymond B. Ridley “ A New Small-Signal Model for Current mode Control Ph. D. Dissertation, VPEC, EE Department, Virginia Tech, Blacksburg, 1999.
[30]Yang Qiu, Ming Xu, Juanjuan Sun, and Fred C. Lee, “High-Frequency Modeling for the Nonlinearities in Buck Converters IEEE Applied Power Electronics Conference and Exposition, pp.1197-1203, Mar. 2006.
[31]Brad Bryant, and Marian K. Kazimierczuk, “Modeling the Closed-Current Loop of PWM Boost DC-DC Converters Operating in CCM With Peak Current-Mode Control, IEEE Transactions on Circuit and Systems I, vol. 52, no. 11, pp. 2404-2412, Nov. 2005.
[32]Jian Li, and Fred C. Lee, “New Modeling Approach for Current Mode Control, IEEE Applied Power Electronics Conference and Exposition, no. 21, pp. 305-311, Feb. 2009.
[33]J. Rajagopalan. K. Xing, Y. Guo, and F. C. Lee, and Bruce Manners, “Modeling and Dynamic Analysis of Paralleled dc/dc Converters with Master-slave Current Sharing Control, IEEE Applied Power Electronics Conference and Exposition, vol. 2, no. 11, pp.678-684, March 1996.
[34]Yuri Panov, and Milan M. Jovanovic, “Loop Gain Measurement of Paralleled DC-DC Converters with Average Current-Sharing Control, IEEE Applied Power Electronics Conference and Exposition, pp. 1048-1053, February 2008.
[35]Dan M. Sable, and Ray B. Ridley, “A High Frequency, Multi-Module, Spacecraft Boost Regulator, IEEE Telecommunications Energy Conference, pp. 227-235, Nov. 1988.
[36]K. Siri, and C. Q. Lee, “Current Distribution Control of Converters Connected in parallel, IEEE Industry Applications Society Annual Meeting, vol. 2, no. 3, pp. 1274-1280, Aug. 1990.
[37]Byungcho Choi, “Dynamics and Control of Switch-mode Power Conversion in Distributed Power Systems Ph. D. Dissertation, VPEC, EE Department, Virginia Tech, Blacksburg, 1992.
[38]Silva Hiti, Dusan Borojevic, Ravindra Ambatipudi, Richard Zhang, and Yimin Jiang, “Average Current Control of Three-Phase PWM boost Rectifier, IEEE Power Electronics Specialists conference, vol. 1, no. 4, pp. 131-137, June, 1995.
[39]Zhihong Ye, Dushan Boroyevich, Jae-Young Choi, and Fred C. Lee, “Control of Circulating Current in Two Parallel Three-Phase Boost Rectifiers, IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 609-615, Sept. 2002.
[40]Chia-Hsiang Lin, Hong-Wei Huang, and Ke-Horng Chen, “Fast Transient Technique (FTT) in Buck Current-mode DC-DC converter for low-voltage SoC Systems IEEE Custom integrated Circuit Conf., pp. 25-28, Sept. 2008.
[41]Chi-Lin Chen, Wei-Lun Hsieh, Han-Hsiang Huang, and Ke-Horng Chen, “Fast Mode-Switching Technique in Hrbrid-Mode Operation, IEEE Midwest Symposium on Circuit and System, pp. 9-12, Aug. 2008.
[42]Ke-Horng Chen, Chia-Jung Chang, and Te-Hsien Liu, “Bidirectional Currrent-mode capacitor Multipliers for On-Chip Compensation, IEEE Transaction on Power Electronics, vol. 23, pp.180-188, Aug. 2008.
[43]Tymerski, and Richard, “Sampled-data modelling of switched circuits, revisited, IEEE Power Electronics Specialists Conference, pp. 395-401, 1993.
[44]Yat-To Wong, Chik-Wai Ng, Ho-Ming Wan, Kwok-kuen Kwong, Yat-Hei Lam, and Wing-Hung Ki, “Near-Threshold Startup Integrated Boost Converter with Slew Rate Enhanced Error Amplifier, IEEE Int. Symposium on Circuit and Systems, pp. 2409-2412, 2009.
[45]Chien-Chun Lu, and Ming-Ching Kuo, “A 5V Ouptut Voltage Boost Switching Converter with Hybrid Digital and Analog PWM Control, IEEE Int. Symposium on low-Power Electronics and Design (ISLPED), pp. 99-104, 2010.
[46]M. L. Chiu, and Hwai-Pwu Chou, “An On-Chip Current Sensing Technique for Hysteresis Current-Controlled Boost Converters, IEEE Int. Conf. on Power Electronics and Drive Systems (PEDS), pp.361-366, Dec, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top