跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾俊硯
研究生(外文):Chun-YenTseng
論文名稱:三五族化合物太陽能電池特性改善之研究
論文名稱(外文):Investigation of performance improvement for III-V compound solar cells
指導教授:李清庭
指導教授(外文):Ching-Ting Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:106
中文關鍵詞:三五族化合物太陽能電池表面處理透明導電膜
外文關鍵詞:III-V compound solar cellsurface treatmenttransparent conduction film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
近年來,具有高轉換效率與高輻射阻抗特性之三五族化合物太陽能電池被廣泛地研究且被應用於地面太陽能發電廠。三五族化合物太陽能電池之優良元件特性是源自於磊晶成長與電流匹配之串疊結構。然而,在三五族化合物太陽能電池製程普遍存在選擇性蝕刻製程,此製程造成高表面態密度與高表面複合速率,因此載子被外部電路汲取能力受到阻礙。在本論文中,光電化學氧化法被使用於窗口層以鈍化懸浮鍵與降低表面態密度。砷化鎵太陽能電池經由光電化學氧化處理之轉換效率改善約3.68%。此外,設計具有較大入射光量之電極結構對於增強三五族化合物太陽能電池之轉換效率也是相當重要的議題。由於透明銦錫氧化物薄膜具有良好的導電性與高穿透特性因此相當適合作為光電元件之電極,但是透明銦錫氧化物與三五族化合物太陽能電池元件卻難以形成良好之歐姆接觸。本論文提出利用薄金屬(金鍺鎳/金)轉換層搭配硫化處理作為中間物質以改善銦錫氧化物與磷化鋁銦層之特徵接觸電阻,根據傳輸線模型方法得知其特徵接觸電阻可達6.83 x 10^-6 ohm-cm^2。另外,本論文也提出由銦錫氧化物薄膜與金屬接觸墊所組成之混合式電極結構取代傳統金屬電極。此兩種設計的電極結構具有較少的金屬覆蓋面積能減少遮蔽損失,並且能解決高歐姆接觸電阻問題。相較於傳統金屬電極,此兩種設計電極結構所增加的入射光量皆大於7%,因此磷化銦鎵/砷化銦鎵/鍺三接面太陽能電池之轉換效率被明顯改善。根據實驗結果,表面鈍化方法與設計之電極結構均可有效改善三五族化合物太陽能電池之轉換效率。
Recently, the III-V compound solar cells with the high conversion efficiency and high radiation hardness were widely investigated and applied in the terrestrial solar power plants. The excellent device performances of III-V compound solar cells were resulted from the epitaxial growth and the current-matched tandem structure. However, a selective etching procedure was generally performed in the fabrication process of III-V compound solar cells, which induce a high surface state density and a high surface recombination rate. Therefore, the carrier extraction capability of external circuit was obstructed. In this dissertation, a photoelectrochemical (PEC) oxidation method was used on the window layer to passivate the dangling bonds and reduce the surface state density. The conversion efficiency improvement of a GaAs-based compound solar cell with PEC treatment was about 3.68%. Furthermore, the designed electrode structure with a larger incident light amount is also the important issues for enhancing the conversion efficiency of III-V compound solar cells. The transparent indium-tin-oxide (ITO) film is suitable used as the electrode of optoelectronic devices owing to its excellent electric conduction and high transmittance property. However, it is difficult to perform good ohmic contact between the transparent indium-tin-oxide (ITO) film and III-V compound solar cells. In this dissertation, a transition layer of AuGeNi/Au thin metals combined with the (NH4)2Sx treatment was used as an intermediate to improve the specific contact resistance between ITO and AlInP layer. According to the TLM method, the specific contact resistance of 6.83 x 10^-6 ohm-cm^2 could be obtained. Besides, the hybrid electrode structure combined of the metal contact pads and the ITO film was also proposed to replace the conventional metal electrode. The two designed electrode structure were used to decrease the shadow loss by the less metal cover area and circumvent the problem of high ohmic contact resistance. Comparing with the conventional metal electrode, the increased incident light amount of the two designed electrode structures were both more than 7%. Therefore, the conversion efficiency of InGaP/InGaAs/Ge triple-junction solar cells was significantly improved. According to the experimental results, the surface passivation method and the designed electrode structures could be expected as promising methods for improving the conversion efficiency of III-V compound solar cells.
Abstract (in Chinese) I
Abstract (in English) III
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Overview of this dissertation 3
References 4
Chapter 2 Background 8
2.1 Schematic of the photoelectrochemical oxidation method 8
2.2 Series resistance of solar cell measurement 10
2.3 Transmission Line Model (TLM) 10
2.4 The equivalent circuit analysis of the solar cells 11
References 15
Chapter 3 Photoelectrochemical oxidation treatment utilized in GaAs-based compound solar cell 25
3.1 Motivation 25
3.2 Device Fabrication 26
3.2.1 Experiment fabrication of GaAs-based compound solar cell 26
3.2.2 Experiment fabrication of the MOS diode 27
3.3 Measurement and experimental results 28
3.3.1 Capacitance-voltage characteristics 28
3.3.2 Reflection performance 29
3.3.3 Dark current density performance 30
3.3.4 Conversion efficiency performance 30
3.3.5 External quantum efficiency performance 31
3.4 Summary 31
References 33
Chapter 4 Transparent electrode structure utilized in (NH4)2Sx-treated III-V compound multijunction solar cell 48
4.1 Motivation 48
4.2 Device Fabrication 49
4.2.1 Experiment fabrication of solar cell with transparent electrode 49
4.2.2 Experiment fabrication of TLM device 50
4.3 Measurement and experimental results 51
4.3.1 Specific contact resistance performance 51
4.3.2 Optical performance 52
4.3.3 Conversion efficiency performance 54
4.4 Summary 56
References 57
Chapter 5 Hybrid electrode structure utilized in III-V compound multijunction solar cell 71
5.1 Motivation 71
5.2 Device fabrication 73
5.2.1 Experiment fabrication of solar cell with transparent electrode 73
5.3 Measurement and experimental results 75
5.3.1 Series resistance performance and shadow loss 75
5.3.2 Conversion efficiency performance 77
5.3.3 Typical dark current density-forward bias voltage curve 80
5.3.4 (NH4)2Sx surface treatment 81
5.4 Summary 84
References 86
Chapter 6 Conclusions and future work 104
Chapter 1
[1]K. Tanabe, A. F. Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, “High-efficiency solar cells from III-V compound semiconductors, Appl. Phys. Lett., vol. 89, pp. 102106-1102106-3, 2006.
[2]S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells, Appl. Phys. Lett., vol. 92, pp. 123512-1123512-3, 2008.
[3]K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett., vol. 93, pp. 121904-1121904-3, 2008.
[4]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables, Prog. Photovoltaics: Res. Appl., vol. 17, pp. 85-94, 2009.
[5]A. Braun, N. Szabo, K. Schwarzburg, T. Hannappel, E. A. Katz, and J. M. Gordon, “Current-limiting behavior in multijunction solar cells, Appl. Phys. Lett., vol. 98, pp. 223506-1223506-3, 2011.
[6]S. Roensch, R. Hoheisel, F. Dimroth, and A. W. Bett, “Subcell III-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements, Appl. Phys. Lett., vol. 98, pp. 251113-1251113-3, 2011.
[7]R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett., vol. 90, pp. 183516-1183516-3, 2007.
[8]H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics, Energy Env. Sci., vol. 2, pp. 174-192, 2009.
[9]R. R. King, D. Bhusari, A. Boca, D. Larrabee, X. Q. Liu, W. Hong, C. M. Fetzer, D. C. Law, and N. H. Karam, “Band gap-voltage offset and energy production in next-generation multijunction solar cells, Prog. Photovolt: Res. Appl., vol. 19, pp. 797-812, 2011.
[10]F. Dimroth, “High-efficiency solar cells from III-V compound semiconductors, Phys. Stat. Sol. (c), vol. 3, no. 3, pp. 373-379, 2006.
[11]J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, “High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction, Appl. Phys. Lett., vol. 91, pp. 023502-1023502-3, 2007.
[12]J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions, Appl. Phys. Lett., vol. 93, pp. 123505-1123505-3, 2008.
[13]S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics, Appl. Phys. Lett., vol. 93, pp. 251108-1251108-3, 2008.
[14]C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd Laser, J. Electron. Mater., vol. 34, pp. 282-286, 2005.
[15]L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor using oxide insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett., vol. 29, pp. 284-286, 2008.
[16]K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006.
[17]J. D. Hwang, C. C. Lin, and W. L. Chen, “Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN, J. Appl. Phys., vol. 100, pp. 044908-1044908-5, 2006.
[18]E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, and S. Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications, Semicond. Sci. Technol., vol. 23, pp. 035001-1035001-4, 2008.
[19]Y. J. Lin, H. Y. Lee, F. T. Hwang, and C. T. Lee, “Low resistive ohmic contact formation on surface treated-n-GaN alloyed at low temperature, J. Electron. Mater., vol. 30, pp. 532-537, 2001.
[20]H. S. Wong, L. Chan, G. Samudra, and Y. C. Yeo, “Effective Schottky barrier height reduction using sulfur or selenium at the NiSi/n-Si(100) interface for low resistance contacts, IEEE Electron Device Lett., vol. 28, pp. 1102-1104, 2007.

Chapter 2
[1]H. Y. Lee, “Growth of GaAs oxide layer using photoelectrochemical method, J. Electrochem. Soc., vol. 155, pp. G141-G144, 2008.
[2]C. M. G. Henriquez, L. H. Tagle, C. A. Terraza, A. B. Gonzalez, A. L. Cabrera, and U. G. Volkmann, “Poly(ester)s and poly(amide)s with fluorene and diphenyl-silane units in the main chain: Effects of iodine doping on the structure and electrical conductivity, J. Appl. Polym. Sci., vol. 125, pp. 477-487, 2012.
[3]L. K. Orlov, E. A. Steinman, T. N. Smyslova, Ivina, N. L. Tereshchenko, and A. N. Tereshchenko, “Features and mechanisms of growth of cubic silicon carbide films on silicon, Phys. of the Sol. State, vol. 54, pp. 708-715 , 2012.
[4]X. J. Wang, L. Q. Wei, X. Zhou, X. M. Zhang, S. F. Ye, and Y. F.Chen, “A superficial coating to improve oxidation and decarburization resistance of bearing steel at high temperature, Appl. Surf. Sci., vol. 258, pp. 4977-4982, 2012.
[5]E. H. Chen, D. T. McInturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer, Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
[6]R. Khare, D. B. Young, G. L. Snider, and E. L. Hu, “Effect of band structure on etch-stop layers in the photoelectrochemical etching of GaAs/AlGaAs semiconductor structures, Appl. Phys. Lett., vol. 62, pp. 1809-1811, 1993.
[7]T. H. Oh, D. L. Huffaker, L. A. Graham, H. Deng, and D. G. Deppe, “Steam oxidation of GaAs, Electron. Lett., vol. 32, pp. 2024-2026, 1996.
[8]H. J. Yoon, M. H. Choi, and I. S. Park, “The study of native oxide on chemically etched GaAs (100) surfaces, J. Electrochem. Soc., vol. 139, pp. 3229-3234 , 1992.
[9]D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells, Sol. Energy Mater. Sol. Cells, vol. 91, pp. 1698-1706, 2007.
[10]A. Gopalakrishnan, M. Kezunovic, S. M. McKenna, and D. M. Hamai, “Fault location using the distributed parameter transmission line model, IEEE Trans. Power Deliv., vol. 15, pp. 1169-1174, 2000.
[11]S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells, J. Appl. Phys., vol. 108, pp. 124509-1124509-10, 2010.
[12]Joseph A Jervase, Hadj Bourdoucen, and Ali Al-Lawati, “Solar cell parameter extraction using genetic algorithms, Meas. Sci. Technol., vol. 12, pp. 1922–1925, 2001.
[13]J. Pallarès, R. Cabré, and L. F. Marsal, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells, J. Appl. Phys., vol. 100, pp. 084513-1084513-5, 2006.
[14]M. K. Munji, W. Okullo, E. E. V. Dyk, and F. J. Vorster, “Local device parameter extraction of a concentrator photovoltaic cell under solar spot illumination, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 2129-2136, 2010.
[15]Ming-Kun Lee, Jen-Chun Wang, Sheng-Fu Horng, and Hsin-Fei Meng, “Extraction of solar cell series resistance without presumed current–voltage functional form, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 578-582, 2010.
[16]J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallarès, “Extraction of poly (3-hexylthiophene) (P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell, J. Appl. Phys., vol. 107, pp. 044505-1044505-4, 2010.

Chapter 3
[1]K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett., vol. 93, pp. 121904-1121904-3, 2008.
[2]S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells, Appl. Phys. Lett., vol. 92, pp. 123512-1123512-3, 2008.
[3]K. Tanabe, A. F. i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, “Direct-bonded GaAs/InGaAs tandem solar cell, Appl. Phys. Lett., vol. 89, pp. 102106-1102106-3, 2006.
[4]K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift, Appl. Phys. Lett., vol. 76, pp. 1197-1199, 2000.
[5]D. Feuermann, and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes, Sol. Energy, vol. 70, no. 5, pp. 423-430, 2001.
[6]M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3, Appl. Phys. Lett., vol. 87, pp. 252104-1252104-3, 2005.
[7]J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination, Appl. Phys. Lett., vol. 79, pp. 2085-2087, 2001.
[8]I. Martín, M. Vetter, A. Orpella, J. Puigdollers, and A. Cuevas, “Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films, Appl. Phys. Lett., vol. 79, pp. 2199-2201, 2001.
[9]B. Hoex, S. B. Heil, E. Langereis, M. C. van de Sanden, and W. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasmaassisted atomic layer deposited Al2O3, Appl. Phys. Lett., vol. 89, pp. 042112-1042112-3, 2006.
[10]Min-Gu Kang and Hyung-Ho Park, “Interface-controlled AuÕGaAs Schottky contact with surface sulfidation and interfacial hydrogenation, J. Appl. Phys., vol. 89, pp.5204-5208, 2001.
[11]J. K. Yang, M. G. Kang, and H. H. Park, “Characteristics of interfacial bonding distribution of Gd2O3-GaAs structure, Vacuum, vol. 96, pp. 161-167, 2002.
[12]F. Maccherozzi, G. Panaccione, G. Rossi, M. Hochstrasser, M. Sperl, M. Reinwald, G. Woltersdorf, W. Wegscheider, and C.H. Back, “Surface treatments and magnetic properties of Ga1−xMnxAs thin films, Surf. Sci., vol. 601, pp. 4283-4287, 2007.
[13]J. Lim, E. F. Chor, and L. S. Tan, “Effects of chemical and plasma surface treatments on the O2-annealed Ni/Au contact to p-Gan, Thin Solid Films, vol. 515, pp. 4471-4475, 2007.
[14]C. T. Lee, C. C. Lin, H. Y. Lee, and P. S. Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors, J. Appl. Phys., vol. 103, pp. 094504-1094504-4, 2008.
[15]L. W. Lai, J. T. Chen, L. R. Lou, C. H. Wu, and C. T. Lee, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors, J. Electrochem. Soc., vol. 155, pp. B1270-B1273, 2008.
[16]A. Darga, D. Mencaraglia, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol. 517, pp. 2550-2553, 2009.
[17]C. Mejía-García, A. Caballero-Rosas, M. López-López, A. Winter, H. Pascher and J.L. López-López, “Evolution of the optical transitions in AlxGa1-xAs/GaAs quantum well structures grown on GaAs buffers with different surface treatments by molecular beam epitaxy, Thin Solid Films, vol. 518, pp. 1825-1829, 2010.
[18]D. M. Murape, N. Eassa, J. H. Neethling, R. Betz, E. Coetsee, H. C. Swart, J. R. Botha, and A. Venter, “Treatment for GaSb surfaces using a sulphur blended (NH4)2S/(NH4)2SO4 solution, Appl. Surf. Sci., vol. 258, pp. 6753-6758, 2012.
[19]C. T. Lee, H. Y. Lee, and H. W. Chen, “GaN MOS Device Using SiO2–Ga2O3 Insulator Grown by Photoelectrochemical Oxidation Method, IEEE Electron Dev. Lett., vol. 24, pp. 54-56, 2003.
[20]J. Tan, M. K. Das, J. A. Cooper, Jr., and M. R. Melloch, “Metal–oxide–semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC, Appl. Phys. Lett., vol. 70, pp. 2280-2281, 1997.
[21]J. Pla, M. Barrera, and F. Rubinelli, “The influence of the InGaP window layer on the optical and electrical performance of GaAs solar cells, Semicond. Sci. Technol., vol. 22, pp. 1122-1130, 2007.
[22]R. R. King, R. A. Sinton, and R. M. Swanson, “Studies of Diffused Phosphorus Emitters: Saturation Current, Surface Recombination Velocity, and Quantum Efficiency, IEEE Trans. Electron Devices, vol. 37, pp. 365-371, 1990.
[23]N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells, Appl. Phys. Lett., vol. 75, pp. 4195-4197, 1999.

Chapter 4
[1]R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett., vol. 90, pp. 183516-1183516-3, 2007.
[2]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables, Prog. Photovoltaics, vol. 17, pp. 85-94, 2009.
[3]H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics, Energy Environ. Sci., vol. 2, pp. 174-192, 2009.
[4]A. W. Bett, R. Adelhelm, C. Agert, R. Beckert, F. Dimroth, and U. Schubert, “Advance Ⅲ-Ⅴ solar cell structures grown by MOVPE, Sol. Energy Mater. Sol. Cells, vol. 66, pp. 541-550, 2001.
[5]T. Sasaki, K. Arafune, H. S. Lee, N. J. Erins-Daukes, S. Tanaka, Y. Ohshita, and M. Yamaguchi, “Effects of thermal cycle annealing on reduction of defect density in lattice-mismatched InGaAs solar cells, Physica B, vol. 376, pp. 626-629, 2006.
[6]D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. H. Jr, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy, J. Appl. Phys. vol. 101, pp. 114916-1114916-8, 2007.
[7]L. W. Lai, J. T. Chen, L. R. Lou, C. H. Wu, and C. T. Lee, “Performance improvement of (NH4)2Sx-treated III–V compounds multijunction solar cell using surface treatment, J. Electrochem. Soc., vol. 155, pp. B1270-B1273, 2008.
[8]J. D. Hwang, C. C. Lin, and W. L. Chen, “Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN, J. Appl. Phys., vol. 100, pp. 044908-1044908-5, 2006.
[9]E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, and S. Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications, Semicond. Sci. Technol., vol. 23, pp. 035001-1035001-4, 2008.
[10]D. K. Schroder, Semiconductor Material and Device characterization.
[11]N. N. Phuoc, F. Xu, and C. K. Ong, “Tuning magnetization dynamic properties of Fe-SiO2 multilayers by oblique deposition, J. Appl. Phys., vol. 105, pp. 113926-1113926-4, 2009.
[12]Y. Yang, H. Qiu, X. Chen, and M. Yu, “Characteristics of Ni films deposited on SiO2/Si(100) and MgO(001) by direct current magnetron sputtering system with the oblique target, Appl. Surf. Sci., vol. 255, pp. 6226–6231, 2009.
[13]J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer, Appl. Phys. Lett., vol. 88, pp. 013501-1–013501-3, 2006.
[14]C. C. Lin and C. T. Lee, “Enhanced light extraction of GaN-Based light emitting diodes using nanorod arrays, Electrochem. Solid State Lett., vol. 13, pp. H278-H280, 2010.
[15]K. H. H. Peter, T. D. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices, Science, vol. 285, pp. 233-236, 1999.
[16]D. L. Windt, “IMD-Software for modeling the optical properties of multilayer films, Comput. in Phys., vol. 12, pp. 360-370, 1998.
[17]Y. Kaneko and K. Kishino, “Refractive indices measurement of (GaInP)m/(AlInP)n qusi-quaternaries and GaInP/AlInP multiple quantum wells, J. Appl. Phys., vol. 76, pp. 809-1816, 1994.
[18]C. D. Tsai and C. T. Lee, “Passivation mechanism analysis of sulfur-passivated InGaP surfaces using x-ray photoelectron spectroscopy, J. Appl. Phys., vol. 87, pp. 4230-4233, 2000.
[19]C. D. Tsai and C. T. Lee, “Passication mechanism analysis of sulfur-passivated InGaP surfaces using x-ray photoelectron spectroscopy, J. Appl. Phys., vol. 87, pp. 4230-4233, 2000.
[20]C. T. Lee and H. Y. Lee, “Surface passivated function of GaAs MSM-PDs using photoelectrochemical oxidation method, IEEE Photonics Technol. Lett., vol. 17, pp. 462-464, 2005.
[21]Y. J. Lin, W. X. Lin, and C. T. Lee, and F. T. Chien, “Changes in optical and electrical properties and surface recombination velocity of n-type GaN due to (NH4)2Sx treatment, Solid State Commun., vol. 137, pp. 257-259, 2006.
[22]K. Nakayama, K. Tanabe, and H. A. Atwater, “Improved electrical properties of wafer-bonded p-GaAs/n-InP interfaces with sulfide passivation, J. Appl. Phys., vol. 103, pp. 094503-1–094503-5, 2008.

Chapter 5
[1]K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems, Sol. Energy Mater. Sol. Cells, vol. 90,pp. 1308-1321, 2006.
[2]N. Shiba, T. Mishuku, H. Karasawa, A. Ito, and M. Yamanaka, “Efficiency of the a-Si:H solar cell and grain size of SnO2 transparent conductive film, IEEE Electron Device Lett., vol. 4, pp. 157-159, 1983.
[3]Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Films, vol. 411, pp. 12-16, 2002.
[4]N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, M. Brumbach, B. Kippelen, B. Domercq, and S. Yoo, “Interface modification of ITO thin films: organic photovoltaic cells, Thin Solid Films, vol. 445, pp. 342-352, 2003.
[5]J. D. Hwang, C. C. Lin, and W. L. Chen, “Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN, J. Appl. Phys., vol. 100, pp. 044908-1044908-5, 2006.
[6]E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, and S. Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications, Semicond. Sci. Technol., vol. 23, pp. 035001-1035001-4, 2008.
[7]J. Robertson and L. Lin, “Bonding principles of passivation mechanism at III-V-oxide interfaces, Appl. Phys. Lett., vol. 99, pp. 222906-1222906-3, 2011.
[8]M. Esposto, S. Krishnamoorthy, D. N. Nath, S. Bajaj, T. H. Hung, and S. Rajan, “Electrical properties of atomic layer deposited aluminum oxide on gallium nitride, Appl. Phys. Lett., vol. 99, 133503-1133503-3, 2011.
[9]Y. L. Chiou, C. S. Lee, and C. T. Lee, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transitors with ZnO gate layer and (NH4)2Sx surface treatment, Appl. Phys. Lett., vol. 97, 032107-1032107-3, 2011.
[10]D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells, Sol. Energy Mater. Sol. Cells, vol. 91, pp. 1698-1706, 2007.
[11]S. Daliento and L. Lancellotti, “3D Analysis of the performances degradation caused by series resistance in concentrator solar cells, Sol. Energy, vol. 84, pp. 44-50, 2010.
[12]N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells, Appl. Phys. Lett., vol. 75, pp. 4195-4197, 1999.
[13]M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3, Appl. Phys. Lett., vol. 87, pp. 252104-1252104-3, 2005.
[14]S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells, J. Appl. Phys., vol. 108, pp. 124509-1124509-10, 2010.
[15]S. J. Cho, S. Dogan, S. Sabuktagin, M. A. Reshchikov, D. K. Johnstone, and H. Morkoc, “Surface band bending in as-grown and plasma-treated n-type GaN films using surface potential electric force microscopy, Appl. Phys. Lett., vol. 84, pp. 3070-3072, 2004.
[16]Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficienct of GaInN/GaN multiple quantum wells with different dislocation densities, Appl. Phys. Lett., vol. 94, pp. 111109-1111109-3, 2009.
[17]Y. S. Lin, Y. T. Lin, and Y. W. Huang, “Electrical, optical and surface properties of P2S5/(NH4)2Sx+Se-treated doped-channel field-effect transistors with double etch-stop layers, Thin Solid Films, vol. 519, pp. 3388-3392, 2011.
[18]R. Kobayashi, H. Hotta, F. Miyasaka, K. Hara, and K. Kabayashi, “Real index-guided AlGaInP visible laser with high-bandgap energy AlInP current blocking layer grown by HCl-assisted metalorganic vapor phase epitaxy, IEEE J. Sel. Top. Quantum Electron., vol. 1, pp. 723-727, 1995.
[19]P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer, J. Appl. Phys., vol. 101, pp. 024507-1024507-4, 2007.
[20]L. W. Lai, J. T. Chen, L. R. Lou, C. H. Wu, and C. T. Lee, “Performance improvement of (NH4)2Sx-treated III-V compounds multijunction solar cell using surface treatment, J. Electrochem. Soc., vol. 155, pp. B1270-B1273, 2008.
[21]J. Pallares, R. Cabre, and L. F. Masal, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells, J. Appl. Phys., vol. 100, pp. 084513-1084513-5, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top