跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊宗翰
研究生(外文):Tsung-HanChuang
論文名稱:溶液式製作有機薄膜電晶體於軟性基板之研究
論文名稱(外文):Organic Thin Film Transistors Fabricated by Solution-processed Methods on Flexible Substrate
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:有機薄膜電晶體五環素聚3-己基噻酚噴墨印刷可撓性
外文關鍵詞:organic thin film transistorspentaceneP3HTinkjet printflexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在探討以溶液式的製程於軟性基板上製作有機薄膜電晶體之現象,初步以真空鍍膜的方式製作五環素有機薄膜電晶體並觀察其可靠度。為了要更進一步降低成本與大面積製造,我們使用噴墨印刷技術定義圖案並分析其可行性,然而,我們發現此製程非常容易受到表面粗糙度以及表面能的影響使得困難度增加,因而單純使用噴印式的絕緣層製作五環素有機薄膜電晶體,但是我們同時也萃取出噴印的最佳參數。經過以上的實驗結果評估,我們改用底部接觸的結構來實現全溶液-聚3-己基噻酚-薄膜電晶體,其絕緣層使用高分子,旋塗於不鏽鋼基板上,源極與汲極使用噴墨印刷定義,所有的製程均是常壓下製作,溫度均在150℃以下。最後,我們成功沿伸溶液式的製程在不同的基板上,也意味著全溶液式的有機薄膜電晶體是可行的。
In this work, the fabrication of solution-processed organic thin film transistors (OTFTs) on flexible substrates was investigated. In the preliminary study, vacuum deposition was used to the fabrication of pentacene-based OTFT to study the reliability. Furthermore, inkjet-printing technology to define patterns in order to reduce the production costs is conducted for feasibility analysis. However, the difficulty of inkjet-printing fabrication will be increased by worse adhesion between materials from rough surface roughness or mismatch of surface energy. Instead, an inkjet-printed insulator in pentacene-based OTFT was employed and the best parameters were extracted, respectively. After evaluating experimental results, bottom contact structure to realize all solution poly (3-hexythiophene) (P3HT) based organic thin film transistor was selected. The polymer insulator was spin-coated on the stainless steel substrate, and source/drain was defined by inkjet-printing. All the processes were operated in atmosphere ambient and below 150℃. Finally, extended solution-processed methods on various substrates were demonstrated. This means that the all solution-processed OTFTs are really feasible.
目錄

Abstract I
摘要 III
第一章 緒論 1
1-1 前言 1
1-2 製造技術的歷史演進 2
1-3 研究動機 3
1-4 組織架構 4
第二章 有機薄膜電晶體 5
2-1結構設計 5
2-2特性曲線 7
2-3基本原理 9
2-4 有機半導體 15
2-5傳導機制 17
第三章 實驗器材與架構 19
3-1 化學藥品 19
3-2 製程儀器 27
3-3 量測儀器 38
3-4 實驗流程 41
3-5溶液製備 42
3-6 製程流程 46
第四章 結果與討論 60
4-1 噴墨印刷之可行性 60
4-2 有機薄膜電晶體之特性 75
第五章 結論與未來展望 85
5-1 結論 85
5-2未來展望 86
參考文獻 87

表目錄

表3-1鋯鈦酸鋇溶液配方 44
表3-2銀墨水、高分子導電膠、BZT噴印條件 48
表4-1 Ag、BZT、PI接觸角和表面能 64
表4-3 紫外光表面處理 72
表4-4 各項參數之比較表 77
表4-5 各種五環素-可撓式有機薄膜電晶體之比較 77
表4-6 噴墨與旋轉塗佈BZT之電晶體參數比較 80
圖目錄

圖2-1 薄膜電晶體之結構(a)頂部接觸(b)底部接觸[16] 6
圖2-2 (a)輸出特性曲線(b)傳輸特性曲線[17] 8
圖2-3 熱平衡下的理想NMOS能帶圖 10
圖2-4 累積(a)空乏(b)反轉區(c)的NMOS能帶圖 10
圖2-5 傳輸特性曲線之臨界電壓的萃取方式[19] 12
圖2-6 傳輸特性之次臨界斜率萃取方式[19] 14
圖2-7有機半導體之分子結構[19] 16
圖2-8 P3HT分子於絕緣層表面上堆疊之方向[24] 16
圖2-9 分子軌域能階示意圖[25] 18
圖3-1鋁材的濺鍍過程[26] 28
圖3-2 射頻濺鍍機 28
圖3-3 蒸鍍機示意圖[26] 30
圖3-4 熱蒸鍍機 30
圖3-5 旋轉塗佈流程 31
圖3-6 旋轉塗佈機 32
圖3-7 Fujifilm Dimatix DMP-2800外觀,中:噴頭和光學顯微鏡,下:基座,右:光學顯微鏡 34
圖3-8 上,桌上型電腦,左下:噴墨頭,中下:光學攝影機和廢液蒐集匣,右下:墨匣、噴孔匣、吸頭 34
圖3-9 壓電噴墨頭的驅動波形[28] 37
圖3-10 全溶液式製程的實驗流程 42
圖3-11 0.5M BZT溶液 44
圖3-12 閘極圖案,長寬範圍 46
圖3-13主動層圖案、長寬範圍 47
圖3-14 源極與汲極圖案、長寬範圍 47
圖3-15 波形設定 49
圖3-16 光學攝影機下的靜態墨滴 50
圖3-17 (a)沉積二氧化矽(b)旋轉塗佈HMDS 51
圖3-18 (a)濺鍍金屬鋁閘極(b)旋轉塗佈BZT 52
圖3-19 (a)蒸鍍pentacene(b)濺鍍金屬金源極與汲極 53
圖3-20 可撓式有機薄膜電晶體元件結構 53
圖3-21 閘極金屬光罩 54
圖3-22 主動層金屬光罩 55
圖3-23 源極與汲極金屬光罩 56
圖3-24 (a)元件外觀(b)光學顯微鏡下的絕緣層 57
圖3-25 噴墨式有機薄墨電晶體之結構 58
圖3-26 全溶液式有機薄膜電晶體之結構 59
圖3-27 (a)元件外觀 (b)光學顯微鏡下的通道區 59
圖4-1 噴墨式MIM結構 61
圖4-2 去離子水在(a)PI塑膠基板上之接觸角 63
圖4-2 去離子水在(b)Ag塑膠基板上之接觸角 63
圖4-2 去離子水在(c)BZT塑膠基板上之接觸角 64
圖4-3 噴印在Ag/PI上的BZT表面龜裂現象 67
圖4-4 (a)噴墨式銀電極於PI基板上之表面形態 68
圖4-4 (b)噴墨式銀電極於PI基板上之表面形態 68
圖4-5 (a)旋轉塗佈之BZT於Ag/PI之表面形態 69
圖4-5 (b)旋轉塗佈之BZT於Ag/PI之表面形態 69
圖4-6 (a)不鏽鋼基板SS340之表面形態 70
圖4-6 (b)不鏽鋼基板SS340之表面形態 70
圖4-7 (a)DMF在P-JET濃度分別為20、30、40、50 v/v% 73
圖4-7 (b) EG在P-JET濃度分別為10、30、50 v/v% 74
圖4-8 MIM(SS340-BZT-P Jet)之漏電流密度-電場關係 74
圖4-9 (a)可撓式有機薄膜電晶體之輸出特性曲線 76
圖4-9 (b) 可撓式有機薄膜電晶體之傳輸特性曲線 76
圖4-10(a)噴墨式有機薄膜電晶體之輸出特性曲線 79
圖4-10 (b)噴墨式有機薄膜電晶體之傳輸特性曲線 79
圖4-11全溶液式有機薄膜電晶體(a)0.1wt%P3HT輸出特性曲線 82
圖4-12全溶液式有機薄膜電晶體(b)0.1wt%P3HT傳輸特性曲線 82
圖4-13全溶液式有機薄膜電晶體(a)0.3wt%P3HT輸出特性曲線 83
圖4-14全溶液式有機薄膜電晶體(b)0.3wt%P3HT傳輸特性曲線 83
圖4-15 (a)開關電流比與P3HT濃度變化之趨勢 84
圖4-16 (b)汲極漏電流趨勢(VD=VS=0V) 84

[1]A Pochettino, “Sul comportamento foto-elettrico dell’ antracene, Acad. Lincei Rendic., vol. 15, p.355-368, 1906.
[2]M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals, J. Chem. Phys., vol. 38, pp. 2042-2043, 1963.
[3]C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene, Physical Review Letters, vol. 39, pp. 1098 - 1101, 1977.
[4]A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett., Vol. 49, pp. 1210-1212, 1986.
[5]G. Horowitz, X. peng, D. Fichou and F. Ganrnier, “Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors, Synth. Met., Vol. 51, pp. 419-424, 1992.
[6]X. Peng, G. Horowitz, D. Fichou and F. Garnier, All-organic thin-film transistors made of aopha-sexithienyl semiconducting and various polymeric insulating layers, Appl. Phys. Lett., vol. 57, pp. 2013-2015, 1990.
[7]Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju and A. J. Lovinger, High-performance plastic transistors fabricated by printing techniques, Chem. Mater., vol. 9, pp. 1299-1301, 1997.
[8]H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits, Science, vol. 290, pp. 2123-2126, 2000.
[9]Y. Sakai, T. Futakuchi and M. Adachi, Preparation of BaTiO3 thick films by inkjet printing on oxygen-plasma-modified substrates , Jpn. J. Appl. Phys., Vol. 45, pp. 7247-7251, 2006.
[10]D. K. Hwang, J.M. Choi, J. H. Park, J. H. Kim, E. Kim, and S. Im, Low-voltage pentacene thin-film transistor with a polymer/YOx/polymer triple-layer dielectric on a plastic substrate, Electrochem. Solid-State Lett., vol. 10, pp. H117-H119, 2007.
[11]K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang and E. Kim, Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at −5 V, Org. Electron., vol. 10, pp. 194-198, 2009.
[12]H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, S. G. Mhaisalkar, J. Kasim, Z. X. Shen and F. R. Zhu, Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors, Appl. Phys. Lett., vol. 93, pp. 183503-1-183503-3, 2008.
[13]C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang, “High mobility pentacene-based thin film Transistors with a solution-processed barium titanate insulator, IEEE Electron Dev. Lett., vol. 32, pp. 90-92, 2011.
[14]M. M. Ling and Z. Bao, “Thin film deposition, patterning, and printing in organic thin film transistors, Chem. Mater., vol. 16, pp. 4824-4840, 2004.
[15]Y. Roichman and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses, Appl. Phys. Lett., vol. 80, pp. 151-153, 2002.
[16]C. Reese, M. Roberts, M. M. Ling and Z. Bao, “Organic thin film transistors, Mater. Today, vol. 7, pp. 20-27, 2004.
[17]Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, Nature Materials, vol. 5, pp. 197-203, 2006.
[18]G. Horowitz, “Organic field-effect transistors, Adv. Mater., vol. 10, pp.365-377, 1998.
[19]Kymissis, “Organic field effect transistors, theory, fabrication and characterization, Springer Science+Business Media, pp.83, 2009.
[20]C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances, IBM J. Res. & Dev., vol. 45, pp.11-27, 2001.
[21]陳壽安, 化工 38, 98 (1992).
[22]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Lgeveld-Voss, A. J. H. Spiering, R. A. J. Janssen and E. W. Meijer, “Microstructure–mobility correlation in self-organised, conjugated polymer field-effect transistors Synth. Met., vol. 111, p.129-132, 2000.
[23]T. W. Kelly, L. D. Boardman, T. D. Dinbar, V. D. Muyres, M. J. Pellerite, and T. P. Smith, “High-performance OTFTs using surface-modified alumina dielectrics, J. Phys. Chem. B., vol. 107, pp. 5877-5881, 2003.
[24]D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. C. Chang, M. Joo, C. Y. Ryu and K. Cho,“ Enhancement of field effect mobility in polythiophene thin film transistors, Adv. Funct. Mater., vol. 15, pp.77-82 ,2005.
[25]Z. Bao and J. Locklin,Organic field effect transistors, CRC Press., pp.11, 2007.
[26]J. D. Plummer, “Silicon VLSI technology: Fundamentals, practice and modeling, Prentice hall, p.542, 2000.
[27]J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, and K. L. Saenger, “Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond, J. Appl. Phys., vol. 70, pp. 1706-1711, 1991.
[28]K. S. Kwon, Y. S. Choi, D. Y. Lee, J. S. Kimb and D. S. Kim, Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head, Sensors and Actuators A, vol. 180, pp. 154-165, 2012.
[29]D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., vol. 13, pp. 1741-1747, 1969.
[30]C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou and Y. H. Wang, Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator, IEEE Electron Dev. Lett., vol. 30, pp.1039-1040, 2009.
[31]C. C. Yeh, Y. J. Lin, S. K. Lin, S. F. Chung, L. M. Huang, T. C. Wen and Y. H. Wang, Plasma treatment on plastic substrates for liquid-phase-deposited SiO2, J. Vac. Sci. Techonl. B, vol. 25, pp. 1635-1639, 2007.
[32]T. H. J. van Osch, J. Perelaer, A. W. M. deLaat, and U. S. Schubert, “Inkjet printing of narrow conductive tracks on untreated polymeric substrates, Adv. Mater., vol. 20, pp. 343-345, 2008.
[33]J. A. Callow1, M. E. Callow, L. K. Ista, G. Lopez and M. K. Chaudhury,The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga ulva linza (synonym enteromorpha linza), J. R. Soc. Interface, vol. 2, pp. 319-325, 2005.
[34]J. S. Kang, H. S. Kim, J. Ryu, H. T. Hahn, S. Jang and J. W. Joung, Inkjet printed electronics using copper nanoparticle ink, J Mater Sci: Mater Electron, vol. 21, pp. 1213-1220, 2010.
[35]A. J. Kinloch. Adhesion and adhesives: Science and technology. Springer, Great Britain:Cambridge University, pp. 41-43, 1987.
[36]J. Y. Kim, J. H. Jung, D. E. Lee and J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene) / poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals, vol. 126, pp. 311-316, 2002.
[37]J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxyth iophene):poly(styrene sulfonate) film through solvent treatment, Polymer, vol, 45, pp. 8443-8450, 2004.
[38]H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, S. G. Mhaisalkar, J. Kasim, Z. X. Shen, and F. R. Zhu, “Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors, Appl. Phys. Lett., vol. 93, pp. 183503-1-183503-3, 2008.
[39]Z. R. Wang, J. Z. Xin, X. C. Ren, X. L. Wang, C. W. Leung, S. Q. Shi, A. Ruotolo and P. K .L. Chan, Low power flexible organic thin film transistors with amorphous Ba0.7Sr0.3TiO3 gate dielectric grown by pulsed laser deposition at low temperature, Organic Electronics, vol. 13, pp. 1223-1228, 2012.
[40]K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang and E. Kim, “Flexible high mobility pentacene transistor with high-k/ low-k double polymer dielectric layer operating at −5 V, Organic Electronics, vol. 16, pp. 239-247, 2008.
[41]D. K. Hwang, J. M. Choi, J. H. Park, J. H. Kim, E. Kim and S. Im, “Low-voltage pentacene thin-film transistor with a polymer/YOx/polymer triple-layer dielectric on a plastic substrate, Electrochem. Solid-State Lett., vol. 10, pp. H117-H119, 2007.
[42]H. Jia, S. Gowrisanker, G. K. Pant, R. M. Wallace, and B. E. Gnade, Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties, J. Vac. Sci. Technol., vol. 24, pp. 1228-1232, 2006.
[43]M. J. Joung, C. A. Kimb, S. Y. Kang, K. H. Baek, G. H. Kim, S. D. Ahn, I. K. You, J. H. Ahn and K. S. Suh, “The application of soluble and regioregular poly(3-hexylthiophene) for organic thin-film transistors, Synthetic Metals, vol. 149, pp.73-77, 2005.
[44]J. A. Lim, J. H. Kim, L. Qiu, W. H. Lee, H. S. Lee, D. Kwak, and K. Cho, Inkjet-printed single-droplet organic transistors based on semiconductor nanowires embedded in insulating polymers, Adv. Funct. Mater., vol. 20, pp. 3292-3297, 2010.
[45]F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrar, “Inkjet-printed graphene electronics, ACS Nano., vol. 6, pp. 2992-3006, 2012.
[46]S. Lim, B. Kang, D. Kwak, W. H. Lee, J. A. Lim, and K. Cho, “Inkjet-printed reduced graphene oxide/poly(vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors, J. Phys. Chem. C, vol. 116, pp. 7520-7525, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊