跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林顯正
研究生(外文):Hsien-ChengLin
論文名稱:磷化銦鎵/砷化銦鎵金氧半假晶高電子移動率場效電晶體之研究
論文名稱(外文):Study on the InGaP/InGaAs Metal-Oxide-Semiconductor Pseudomorphic High Electron Mobility Transistors
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:125
中文關鍵詞:液相氧化法磷化銦鎵/砷化銦鎵金氧半高電子移動率場效電晶體
外文關鍵詞:Liquid Phase OxidationInGaP/InGaAsMOSHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用液相氧化法(Liquid Phase Oxidation, LPO)製作閘極氧化層成長在磷化銦鎵/砷化銦鎵金氧半假晶高電子移動率場效電晶體上。液相氧化法無需外加額外的能量或電壓,只需將砷化鎵系列晶片浸入調配好的成長液當中,即可在低溫環境中(30–70◦C)成長平坦且均勻的氧化層。液相氧化法係利用硝酸銨溶液水解產生硝酸,硝酸分解產生氧氣,氧化半導體,使之轉化成為氧化層。本論文提出硝酸銨法製作液相氧化法成長液,取代原本利用滴定法製作液相氧化法成長液,硝酸銨法相較滴定法配製之成長液,具備較少的成長液配製時間之優勢,改善因滴定法配製之成長液內含硝酸,硝酸分解後將導致成長液產生pH值漂移現象,進而減少氧化層成長厚度(成長1小時,厚度短少20%)等缺點。
元件製程中,閘極表面粗糙度(surface roughness)的好壞,將直接對元件直流、高頻及雜訊等特性造成影響。粗糙的表面將造成表面態位(surface state)、表面缺陷(surface defect)增加,閘極漏電流上升,導致閘極掌控能力降低,以及雙指式元件(閘極尺寸為2×1×100 μm2)特性不一致等缺點。粗糙的表面也將造成閘極電阻(Rg)變大,影響最大震盪頻率(fmax)等高頻特性表現,同時高頻雜訊也將因此上升。此外,表面態位、表面缺陷增加,也將造成低頻雜訊增加。液相氧化法利用穩定的轉子旋轉幫助下,成長平坦的液相氧化層,將有效改善閘極表面粗糙度。
液相氧化層因與閘極電容(Cgs)串聯的緣故,能有效降低閘極電容,並能改善雜質散射現象對通道載子的影響,提升元件轉導特性,因而提高截止頻率(fT)。本論文中之金氧半假晶高電子移動率場效電晶體元件(閘極線寬1 μm),fT最高可達到50 GHz.μm。然而,長時間浸泡在成長液中,將造成歐姆接觸變差,源/汲極電阻(Rs/Rd)變大,影響元件特性。因此,本論文提出利用光阻保護歐姆接觸的製程。在閘極蝕刻(gate recess)前,先於歐姆接觸上覆蓋一層光阻,保護歐姆接觸不受蝕刻液及成長液影響,改善源/汲極電阻,提升元件接觸電阻特性,進而改善最大震盪頻率(fmax),可由20.3提高到50 GHz.μm。此外,由實驗結果可知,此做法尚可改善雙指式元件特性不一致的缺點,提升雙指式元件在電流(238/230 mA/mm)、轉導(200/211 mS/mm)及臨限電壓(0.07/0.12 V)特性上的一致性。
最後,本論文成功應用液相氧化法製作砷化鎵閘極氧化層及磷化銦鎵閘極氧化層在磷化銦鎵/砷化銦鎵金氧半假晶高電子移動率場效電晶體上。液相氧化層能有效改善閘極表面粗糙度、表面態位、表面缺陷,雜質散射之影響,提升元件電流、轉導特性,改善閘極漏電流,提升崩潰電壓,降低閘極電容,進而提升元件在直流、微波、功率及雜訊方面表現出來之特性。

InGaP/InGaAs metal-oxide-semiconductor pseudomorphic high electron mobility transistors (MOS–PHEMTs) with liquid phase oxidation (LPO) are demonstrated in this dissertation. The LPO technique works without the anodic equipment or an assisting energy source. An easy, low-temperature (30 °C to 70 °C), and low-cost technique is required for growing uniform and smooth oxide films on GaAs-based materials. When the LPO growth solution is heated, the hydrolysis reaction of the ammonium nitrate solution generates nitride acid. Then, nitric acid can be decomposed through heat to generate oxygen. Semiconductor materials are then oxidized by oxygen and converted into oxide films. The ammonium nitrate salt, NH4NO3, was added into deionized water to simplify the LPO solution preparation procedures. This process is called the ammonium nitrate salt method. This method is used to replace the original titration method, which involves the use of a small amount of nitric acid initially. Furthermore, the ammonium nitrate salt method provides a large reduction in the preparation time of the LPO solution and eliminates the nitric acid at the beginning, which may disturb the initial pH value because of the heat. The deviation of the initial pH value from that in the titration method causes the missing of the pH window, which results in a 20% decrease on the oxide thickness (1 hr oxidation).
The surface roughness underneath the gate metallization influences dc, microwave, and noise performances directly. The surface roughness causes an increase in the surface states, the surface defects, and the gate leakage currents, which results in the poor gate control capability and less conformity of the two-finger device (dimension of 2×1×100 μm2). Moreover, the surface roughness induces an increase in the gate resistance (Rg). The increase in Rg degrades the maximum oscillation frequency (fmax) and the minimum noise figure (NFmin). Furthermore, the increase in the surface states and in the surface defects causes degradations in the low frequency noise. By helping with the stable stir spin speed (e.g., 60 rpm), better uniform oxide films are obtained to improve the surface roughness.
The gate capacitance (Cgs) becomes small due to a series connection between the Cgs and LPO oxide. Moreover, the LPO enhances the transconductance (gm) due to the reduction of impurity scattering, which may influence the channel carrier transport. This reduction improves the unity–current–gain cutoff frequency (fT) . In this work, the fT reached 50 GHz.μm with 1 μm gate length. However, a long LPO process may degrade the ohmic contact, which causes an increase in a source/drain access resistance (Rs/Rd). An anti-ohmic cover technique that can overcome these shortcomings is presented. This technique adopts the photoresist as a mask on the ohmic area to protect the ohmic contact during the gate recess and LPO processes. Furthermore, the improved ohmic contact through the anti-ohmic cover technique causes an improvement in the fmax as well, from 20.3 GHz.μm to 50 GHz.μm. In addition to the protection of the ohmic contact, the anti-ohmic cover technique improves the conformity of ID,max (238/230 mA/mm), gm (200/211 mS/mm), and Vth (0.07/0.12 V) performances of the two-finger device. Finally, InGaP/InGaAs MOS–PHEMTs with GaAs and InGaP LPO oxides are demonstrated in this dissertation. The LPO oxides improve the surface roughness, the surface states, and the surface defects. Furthermore, LPO reduces the influence of impurity scattering and enhances the I–V, gm, gate leakage current, breakdown field, and Cgs properties to improve dc, microwave, power, and noise performances of the mentioned devices in this dissertation.

ABSTRACT (Chinese) I
ABSTRACT (English) III
ACKNOWLEDGMENTS VI
CONTENTS VIII
FIGURE CAPTIONS XI
TABLE CAPTIONS XVIII

CHAPTER 1 Introduction
1.1 Background 1
1.2 Gate Etching Formation 6
1.3 Anti–Ohmic Cover Technique 6
1.4 Motivation 7
1.5 Organization 7
1.6 References 9

CHAPTER 2 Experimental Method and Research Design
2.1 Liquid Phase Oxidation System 13
2.1.1 Titration Method Preparation Procedures 13
2.1.2 Oxidation Mechanism 17
2.1.3 Ammonium Nitrate Salt Method Preparation
Procedures 18
2.2 Anti–Ohmic Cover Technique 20
2.3 Forward and Reverse Direction Liquid Phase
Oxidation Techniques 22
2.4 Gate Etching Formation 24
2.5 Device Fabrication Procedures 27
2.6 References 37

CHAPTER 3 Results and Discussion
3.1 InGaP/InGaAs MOS-PHEMT with a Nanoscale
Liquid Phase-Oxidized InGaP Dielectric 39
3.1.1 Experimental 39
3.1.2 Results and Discussion 40
3.1.3 Summary 46
3.2 Characteristics of InGaP/InGaAs MOS–PHEMT
with a Liquid Phase–Oxidized GaAs Gate
Dielectric 54
3.2.1 Experimental 54
3.2.2 Results and Discussion 55
3.2.3 Summary 58
3.3 Enhancement–Mode InGaP/InGaAs MOS–PHEMT 65
3.3.1 Experimental 65
3.3.2 Results and Discussion 65
3.3.3 Summary 67
3.4 Enhancement–Mode InGaP/InGaAs MOS–PHEMT
with the Anti–Ohmic Cover Technique 71
3.4.1 Experimental71
3.4.2 Results and Discussion 71
3.4.3 Summary 72
3.5 Characteristics of InGaP/InGaAs MOS–PHEMTs
with the Forward Direction Liquid Phase
Oxidation 75
3.5.1 Experimental 75
3.5.2 Device Characteristics 75
3.6 References 80

CHAPTER 4 Conclusion and Future Works
4.1 Conclusion 84
4.2 Future Works 85

APPENDIX
A. Characteristics of InGaP/InGaAs MOS–PHEMTs
with the Thirty Two Minutes Forward
Direction Liquid Phase Oxidation 86
A.1 Experimental 86
A.2 Device Characteristics 86
B. Characteristics of InGaP/InGaAs MOS–PHEMTs
with the Thirty Two Minutes Reverse
Direction Liquid Phase Oxidation 96
B.1 Experimental 96
B.2 Device Characteristics 96
C. Characteristics of InGaP/InGaAs MOS–PHEMTs
with the Thirty Minutes Reverse Direction
Liquid Phase Oxidation 105
C.1 Experimental 105
C.2 Device Characteristics 105
D. Characteristics of InGaP/InGaAs MOS–PHEMTs
with the Thirty Minutes Forward Direction
Liquid Phase Oxidation 114
D.1 Experimental 114
D.2 Device Characteristics 114

PUBLICATION LIST 122
VITA 125
Chapter 1
1.Y. Konishi, “Special issue on satellite broadcasting, IEEE Transactions on Broadcasting, vol. 34, pp. 421–524, 1988.
2.T. Mimura, “The early history of the high electron mobility transistor (HEMT), IEEE Trans. Microwave Theory Tech., vol. 50, pp. 780–782, 2002.
3.K. Joshin, N. Hidaka, and K. Hikosaka, “A high–gain HEMT monolithic down converter for X-band direct broadcast satellite applications, IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, California, 1993, pp. 229–232.
4.H. Zirath, N. Wadefalk, R. Kuzhuharov, et al, “Integrated receivers up to 220 GHz utilizing GaAs–mHEMT technology, IEEE International Symposium on Radio-Frequency Integration Technology, Singapore, 2009, pp. 225–228.
5.J. W. Archer, and M. G. Shen, “176–200–GHz receiver module using indium phosphide and gallium arsenide MMICs, Microwave Opt. Technol. Lett., vol. 43, pp. 458–462, 2004.
6.D. C. Streit, K. L. Tan, R. M. Dia, J. K. Liu, A. C. Han, J. R. Velebir, S. K. Wang, T. Q. Trinh, P. M. D. Chow, P. H. Liu, and H. C. Yen, “High–gain W–band pseudomorphic InGaAs power HEMT’s, IEEE Electron Device Lett., vol. 12, pp. 149–150, 1991.
7.S. Subramanian, “Model for the temperature dependence of the threshold voltage of modulation–doped field–effect transistor, IEEE Trans. Electron Dev., vol. 32, pp. 865–870, 1985.
8.H. L. Störmer, R. Dingle, A. C. Gossard, W. Wiegmann, and M. D. Sturge, “Two–dimensional electron gas at a semiconductor-semiconductor interface, Solid State Comm., vol. 88, pp. 933–937, 1993.
9.T. J. Drummond, R. J. Fischer, W. F. Kopp, H. Morkoc, K. Lee, and M. S. Shur, “Bias dependence and light sensitivity of (Al,Ga)As/GaAs MODFET's at 77K, IEEE Trans. Electron Dev., vol. 30, pp. 1806–1811, 1983.
10.H. C. Lin, F. M. Lee, Y. C. Cheng, K. W. Lee, F. Adriyanto, and Y. H. Wang, “InGaP/InGaAs MOS–PHEMT with a nanoscale liquid phase–oxidized InGaP dielectric, Solid-State Electronics, vol. 68, pp. 27–31, 2012.
11.K. W. Lee, J. S. Huang, Y. L. Lu, F. M. Lee, H. C. Lin, T. Y. Wu, and Y. H. Wang, “Investigation of TiO2 on AlGaAs prepared by liquid phase deposition and its application, Solid–State Electronics, vol. 68, pp. 85–89, 2011.
12.O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing, Thin Solid Films, vol. 402, pp. 248–261, 2002.
13.N. C. Paul, M. Takebe, M. Tametou, H. Seto, Y. Fujino, K. Iiyama, and S. Takamiya, “N–channel, p–channel, depletion, enhancement GaAs metal-Insulator-semiconductor field effect transistors with gate films formed by oxi–nitridation of GaAs surfaces, IEEE Conf. on Indium Phosphide and Related Materials, Japan, 2005, pp.246–249.
14.K. W. Lee, “Investigation of liquid phase oxidation on GaAs based materials and its applications, Ph.D. dissertation, Dept. Elect. Eng., Cheng Kung Univ., Tainan, Taiwan, 2006.
15.H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid phase chemical-enhanced oxidation for GaAs operated near room temperature, Jpn. J. Appl. Phys., vol. 37, pp. L67–L70, 1998.
16.H. H. Wang, Y. H. Wang, and M. P. Houng, “Near–room–temperature selective oxidation on GaAs using photoresist as a mask, Jpn. J. Appl. Phys., vol. 37, pp. L988–L990, 1998.
17.H. H. Wang, D. W. Chou, Y. H. Wang, and M. P. Houng, “Properties of GaAs oxides prepared by liquid phase chemical enhanced technique, Physica Scipta, vol. T79, pp. 239–242, 1999.
18.H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effects of pH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs, J. Electrochem. Soc., vol. 146, pp. 2328–2332, 1999.
19.H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effects of crystal orientation and doping on the activation energy for GaAs oxide growth by liquid phase method, J. Appl. Phys., vol. 87, pp. 2629–2633, 2000.
20.H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Surface oxidation kinetics of GaAs oxide growth by liquid phase chemical–enhanced technique, Jpn. J. Appl. Phys., vol. 39, pp. 4477–4480, 2000.
21.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate, IEEE Electron Device Lett., vol. 20, pp. 18–20, 1999.
22.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate, IEEE Trans. Electron Dev., vol. 48, pp.634–637, 2001.
23.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “Fabrication of depletion–mode GaAs MOSFET’s with a selective oxidation process by using metal as the mask, IEEE Electron Device Lett., vol. 22, pp. 2–4, 2001.
24.J. Y. Wu, P. W. Sze, Y. H. Wang, and M. P. Houng, “Temperature effect on gate leakage currents in gate dielectric films of GaAs MOSFET, Solid-State Electronics, vol. 45, pp. 1999–2003, 2001.
25.J. Y. Wu, H. H. Wang, P. W. Sze, Y. H. Wang, and M. P. Houng, “A planarized shallow–trench–isolation for GaAs devices fabrication using liquid phase chemical enhanced oxidation process, IEEE Electron Device Lett., vol. 23, pp. 237–239, 2002.
26.K. W. Lee, H. C. Lin, F. M. Lee, and Y. H. Wang, “Selective liquid phase oxidation of AlGaAs and application to AlGaAs/InGaAs pseudomorphic high electron mobility transistor, J. Electrochem. Soc., vol. 156, pp. H763–H766, 2009.
27.K. W. Lee, H. C. Lin, C. H. Tu, K. L. Lee, and Y. H. Wang, “Selective liquid–phase oxidation of InGaAs and application to metal–oxide–semiconductor InAlAs/InGaAs metamorphic HEMT without gate recess, J. Electrochem. Soc., vol. 155, pp. H932–H936, 2008.
28.K. W. Lee, H. C. Lin, K. L. Lee, C. H. Hsieh, and Y. H. Wang, “Comprehensive study of InAlAs/InGaAs metamorphic high electron mobility transistor with oxidized InAlAs gate, J. Electrochem. Soc, vol. 156, pp. H925–H929, 2009.
29.H. C. Lin, K. W. Lee, C. H. Hsieh, Y. C. Cheng, and Y. H. Wang, “InAs native oxides prepared by liquid phase oxidation method, J. Electrochem. Soc, vol. 157, pp. G230–G233, 2010.

Chapter2
1.H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid phase chemical-enhanced oxidation for GaAs operated near room temperature, Jpn. J. Appl. Phys., vol. 37, pp. L67–L70, 1998.
2.H. C. Lin, K. W. Lee, C. H. Hsieh, Y. C. Cheng, and Y. H. Wang, “InAs native oxides prepared by liquid phase oxidation method, J. Electrochem. Soc, vol. 157, pp. G230–G233, 2010.
3.H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effects of pH value on the kinetics of liquid phase chemical-enhanced oxidation of GaAs, J. Electrochem. Soc, vol. 146, pp. 2328–2332, 1999.
4.H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Surface oxidation kinetics of GaAs oxide growth by liquid phase chemical–enhanced technique, Jpn. J. Appl. Phys., vol. 39, pp. 4477–4480, 2000.
5.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate, IEEE Electron Device Lett., vol. 20, pp. 18–20, 1999.
6.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate, IEEE Trans. Electron Dev., vol. 48, pp.634–637, 2001.
7.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “Fabrication of depletion–mode GaAs MOSFET’s with a selective oxidation process by using metal as the mask, IEEE Electron Device Lett., vol. 22, pp. 2–4, 2001.
8.H. C. Lin, F. M. Lee, Y. C. Cheng, K. W. Lee, F. Adriyanto, and Y. H. Wang, “InGaP/InGaAs MOS–PHEMT with a nanoscale liquid phase–oxidized InGaP dielectric, Solid-State Electronics, vol. 68, pp. 27–31, 2012.
9.K. W. Lee , H. C. Lin, C. C. Wu, F. M. Lee, and Y. H. Wang, “Control of threshold voltage and improved subthreshold swing in enhancement-mode InGaP/InGaAs metal–oxide–semiconductor pseudomorphic high–electron–mobility transistor, Solid-State Electronics, vol. 57, pp. 80–82, 2011.
10.K. W. Lee, H. C. Lin, K. L. Lee, C. H. Hsieh, and Y. H. Wang, “Comprehensive study of InAlAs/InGaAs metamorphic high electron mobility transistor with oxidized InAlAs gate, J. Electrochem. Soc, vol. 156, pp. H925–H929, 2009.
11.K. W. Lee, H. C. Lin, F. M. Lee, H. K. Huang, and Y. H. Wang, “Improved microwave and noise performance of InAlAs/InGaAs metamorphic high–electron-mobility transistor with a liquid phase oxidized InGaAs gate without gate recess, Appl. Phys. Lett., vol. 96, pp. 203506–1–203506–3, 2010.
12.K. W. Lee, H. C. Lin, F. M. Lee, and Y. H. Wang, “Selective liquid phase oxidation of AlGaAs and application to AlGaAs/InGaAs pseudomorphic high electron mobility transistor, J. Electrochem. Soc., vol. 156, pp. H763–H766, 2009.

Chapter3
1.K. W. Lee, P. W. Sze, Y. J. Lin, N. Y. Yang, M. P. Houng, and Y. H. Wang, “InGaP/InGaAs metal–oxide semiconductor pseudomorphic high–electron–mobility transistor with a liquid–phase–oxidized InGaP as gate dielectric , IEEE Electron Device Lett., vol. 26, pp. 864–866, 2005.
2.H. C. Lin, K. W. Lee, C. H. Hsieh, Y. C. Cheng, and Y. H. Wang, “InAs native oxides prepared by liquid phase oxidation, J. Electronchem. Soc., vol. 157, pp. G230–G233, 2010.
3.H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid phase chemical–enhanced oxidation for GaAs operated near room temperature, Jpn. J. Appl. Phys., vol. 37, pp. L67–L70, 1998.
4.W. C. Hsu, C. S. Lee, C. S. Ho, Y. N. Lai, J. C. Huang, B.Y. Chou, A. Y. Kao, H. H. Yeh, and C. L. Wu, “InAlAs/InGaAs MOS–mHEMTs by using ozone water oxidation treatment, Electrochemical and Solid State Letters, vol. 13, pp. H234–H236, 2010.
5.E. Lefebvre, M. Malmkvist, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, S. Bollaert, and J. Grahn, “Gate–recess technology for InAs/AlSb HEMTs, IEEE Trans. Electron Dev., vol. 56, pp. 1904–1911, 2009.
6.H. Fukui, “Determination of the basic device parameters of a GaAs MESFET, BSTJ, vol. 58, pp. 771–797, 1979.
7.P. Wolf, “Microwave properties of Schottky–barrier field-effect transistors, IBM Journal of Research and Development, vol. 9, pp. 125–141, 1970.
8.L. F. Lester, P. M. Smith, P. Ho, P. C. Chao, R. C. Tiberio, K. H. G.. Duh, and E. D. Wolf, “0.15 μm gate-length double recess pseudomorphic HEMT with Fmax of 350 GHz, IEEE International Electron Devices Meeting, Japan, 1988, pp. 172–175.
9.H. Fukui, “Optimal noise figure of microwave GaAs MESFET's, IEEE Trans. Electron Dev., vol. 26, pp. 1032–1037, 1979.
10.R. Reuter, S. V. Waasen, and F. J. Tegude, “A new noise model of HFET with special emphasis on gate–leakage, IEEE Electron Device Lett., vol. 16, 74–76, 1995.
11.H. Berger, “Contact resistance on diffused resistors, Solid-State Circuits Conference. Digest of Technical Papers. IEEE International, Pennsylvania, 1969, pp.160–161.
12.G. K. Reeves, and H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements, IEEE Electron Device Lett., vol. 3, pp. 111–113, 1982.
13.S. Bollaert, Y. Cordier, M. Zaknoune, H. Happy, V. Hoel, S. Lepilliet, D. Théron, and A. Cappy, “The indium content in metamorphic InxAl1–xAs/InxGa1–xAs HEMTs on GaAs substrate: a new structure parameter, Solid State Electronics, vol. 44, pp. 1021–1027, 2000.
14.C. Gaquiere, S. Bollaert, M. Zaknoune, Y. Cordier, D. Theron, and Y. Crosnier, “Influence on power performances at 60 GHz of indium composition in metamorphic HEMTs, Electron. Lett., vol. 35, pp. 1489–1491, 1999.
15.B. Hughes, N. G. Fernandez, and J. M. Gladstone, “GaAs FET’s with a flicker–noise corner below 1 MHz, IEEE Trans. Electron Dev., vol. 34, pp. 733–741, 1987.
16.F. N. Hooge, “l/f noise sources, IEEE Trans. Electron Dev., vol. 41, pp. 1926–1935, 1994.
17.L. K. J. Vandamme, “Noise as a diagnostic tool for quality and reliability of electronic devices, IEEE Trans. Electron Dev., vol. 41, pp. 2176–2187. 1994.
18.M. P. Persson, H. Mera, Y. M. Niquet, C. Delerue, and M. Diarra, “Charged impurity scattering and mobility in gated silicon nanowires, Phys. Rev. B, vol. 82, pp. 115318–1–115318–8, 2010.
19.J. W. W. van Tilburg, R. E. Algra. W. G. G. Immink, M. Verheijen, E. P. A. M. Bakkers, and L. P. Kouwenhoven, “Surface passivated InAs/InP core/shell nanowires, Semicond. Sci. Technol., vol. 25, pp. 024011–1–024011–7. 2010.
20.A. Mahajan, P. Fay, M. Arafa, and I. Adesida, “Integration of InAlAs/InGaAs/InP enhancement– and depletion–mode high electron mobility transistors for high–speed circuit applications, IEEE Trans. Electron Dev., vol. 45, pp. 338–340, 1998.
21.Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride–based plasma treatment: from depletion node to enhancement mode, IEEE Trans. Electron Dev., vol. 53, pp. 2207–2215, 2006.
22.H. Y. Tu, T. H. Chou, Y. S. Lin, H. C. Chiu, P. Y. Chen, W. C. Wu, and S. S. Lu, “DC and RF characteristics of E–mode Ga0.51In0.49P–In0.15Ga0.85As pseudomorphic HEMTs, IEEE Electron Device Lett., vol. 24, pp. 132–134, 2003.
23.L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2 V–operated InGaP–AlGaAs–InGaAs enhancement–mode pseudomorphic HEMT, IEEE Electron Device Lett. vol. 26, pp. 53–55, 2005.
24.J. B. Shealy, T. Y. Liu, M. A. Thompson, R. G. Wilson, L. D. Nguyen, and U. K. Mishra, “High threshold uniformity, millimeter–wave p+ –GaInAs/n–AlInAs/GaInAs JHEMT’s, IEEE Electron Device Lett. vol. 16, pp. 560–562, 1995.
25.R.Menozzi, “Off–state breakdown of GaAs PHEMTs: review and new data, IEEE Trans. Dev. Mater. Reliab., vol. 4, pp. 54–62, 2004.
26.M. Matloubian, L. M. Jelloian, A. S. Brown, L. D. Nguyen, L. E. Larson, M. J. Delaney, M. A. Thompson, R. A. Rhodes, and J. E. Pence, “V–band High–Efficiency High–Power AlInAs/GaInAs/InP HEMT’s, IEEE Trans. Microwave Theory Tech., vol. 41, pp.2206–2210, 1993.
27.M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Th´eron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage, IEEE Electron Device Lett. vol. 19, pp. 345–347, 1998.
28.K. J. Schoen, J. M. Woodall, J. A. Cooper, Jr., and M. R. Melloch, “Design considerations and experimental analysis of high–voltage SiC Schottky barrier rectifiers, IEEE Trans. Electron Dev., vol. 45, pp. 1595–1604, 1998.
29.A. Piotrowska, A. Guivarch, and S. Pelous, “Ohmic contacts to III–V compound semiconductors: a review of fabrication techniques, Solid State Electronics, vol. 26, pp. 179–197, 1983.
30.P. A. Grudowski, R. V. Chelakara, and R. D. Dupuis, “An InAlAs/InGaAs metal oxide semiconductor field effect transistor using the native oxide of InAlAs as a gate insulation layer, Appl. Phys. Lett., vol. 69, pp. 388–401, 1996.
31.S. R. Bahl, M. H. Leary, and J. A. del Alamo, “Mesa–sidewall gate leakage in InAlAs/InGaAs heterostructure field–effect transistors, IEEE Trans. Electron Dev., vol. 395, pp. 2037–2043, 1992.
32.Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic–doped InGaP/InGaAs/AlGaAs tunneling real–space transfer HEMT, IEEE Trans. Electron Dev., vol. 49, pp. 221–225, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊