跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許育唯
研究生(外文):Yu-WeiHsu
論文名稱:多孔PMMA模板之研製及其應用於氮化鎵基LED表面粗化及單晶太陽電池抗反射層之研究
論文名稱(外文):Fabrication of Porous PMMA Template and Its Application as a Surface Roughening/Anti-reflective Layer for GaN-LED/mono-crystalline Silicon Solar Cell
指導教授:王水進
指導教授(外文):Shui-Jinn Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:氮化鎵發光二極體單晶矽太陽電池表面粗化抗反射層多孔薄膜技術
外文關鍵詞:GaNLEDmono-crystalline silicon solar cellsurface rougheninganti-reflective layerporous film technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機金屬化學氣相磊晶(MOCVD)技術發展至今,即被普遍地應用各種材料的磊晶生長,並獲得優良的磊晶品質,使得發光二極體的發光效率大幅提升。以GaN-基元件而言,其內部量子效率最高已達95 %以上,但總體效率不高的主要原因取決於外部量子效率,因此本研究將著重於發光元件表面粗化以期提升光萃取效率的部分。
本研究目標之一為在p-GaN上藉由breath figure法所製作之多孔有機高分子PMMA薄膜暫時性模板,成長氧化鋅奈米線進行表面粗化。多孔薄膜是利用旋轉塗佈過程中通入不同溫度及相對濕度之水蒸氣,利用重力將微米/次微米等級水滴向下壓出孔洞,透過調變不同旋轉速率(800、1200、1600及2000 rpm)及PMMA溶劑重量百分比可以得到不同孔徑大小及薄膜厚度。薄膜乾燥後利用30 W氧電漿轟擊薄膜60秒,將孔洞底部完全蝕刻露出元件p-GaN表面。本研究製程中選擇於孔徑大小(直徑)約為1~10 μm,薄膜厚度0.5 μm之暫時性模板內利用水熱法成長平均長度約 1 μm及直徑約100 nm之氧化鋅奈米線,再利用丙酮去除PMMA暫時性模板,完成可控制密度之表面粗化目標。由於氧化鋅奈米線具有光波導、粗化及漸變性折射係數(graded refractive index)之功用,在工作電流350 mA下,最高可得到光輸出功率增加約50.48 %。
本研究另一目標係將多孔PMMA薄膜應用於單晶矽太陽電池之抗反射層。目前業界及學界所應用之主流抗反射材料為Si3N4,其折射係數介於PMMA與Si之間,利用多孔薄膜可降低Si3N4週期性波動之反射率。實驗發現過低轉速(〈 800 rpm)將造成薄膜厚度過厚及孔徑較大,不利入光提升;然過高轉速則將使孔徑太小無法確實形成空心孔洞,本研究採用旋轉塗佈轉速800、1200及1600轉的多孔薄膜進行分析,發現於1200轉附近可獲得較佳抗反射效果。實驗藉果顯示,多孔薄膜塗佈後可增加太陽電池短路電流1.8 %,提升填充因子約3 %,轉換效率提升0.68 %。本研究利用breath figure法製作多孔薄膜製程較黃光微影及奈米壓印等方法簡單且不需高溫及昂貴設備限制,可分別提升LED與太陽電池之發光與轉換效率,具有商業應用價值。

Gallium nitride (GaN) materials have attracted considerable interest in the development of light emitting diodes (LEDs). Further enhancements in internal and external quantum efficiencies are absolutely necessary for the development of high efficiency LEDs for solid state lighting. Recently, various attempts, including surfacing roughening with chemical and or laser etching, nanomaterials, photonic crystal, etc., have been demonstrated to enhance the light extraction efficiency of GaN-based LEDs. However, these processes usually involve expensive lithographic patterning and cumbersome fabrication processes. In this study, to retain simplicity and cost effectiveness, the preparation of porous PMMA film using breath figures process for the growth of patterned ZnO-NWs atop LEDs to enhance their light output power is proposed and results are discussed. The effectiveness of the proposed technique is examined.
Porous PMMA film was formed by the gravity of water droplets, pressuring out micron/submicron pores among PMMA solution. After the solution and water droplets were totally evaporated, hollowed caves were formed where droplets were embedded. 30 W oxygen plasma was treated to porous film for 1 minute to remove possible PMMA residuals in the pores, and finally remove PMMA template by acetone after NWs growth to accomplish the surface roughening. ZnO NWs has light wave guiding, surface roughing, and graded refractive index advantages, improving light output power of GaN-LED up to 50.48%.
Porous PMMA film as anti-reflective coating on mono-crystalline silicon solar cell was also prepared and examined in this research. Si3N4 is the most commonly used material as AR coating, and has graded refractive index between n-Si and air to reduce reflection of light. Porous PMMA can further reduce the periodic reflectivity fluctuation of Si3N4. Spin coating speed below 800 rpm can cause too large pore size and thick film that no improvement will occur, and high rotation speed above 2000 rpm can cause unreliable formation of porous film. Due to reasons mentioned above, 800~1600 rpm rotation speed was chosen and analyzed, acquiring that 1200 rpm has the best anti-reflective effect with 3%/0.65% improvement in fill-factor/efficiency.

中文摘要 I
英文摘要 IV
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
第一章、簡介 1
1-1、高功率GaN-基LEDs及單晶矽太陽能電池之發展 1
1-2、研究動機 6
第二章、LED元件發光效率及太陽能電池光電轉換效率提升技術 9
2-1、磊晶層品質改善技術 10
2-1-1、磊晶薄膜品質控制 12
2-1-2、磊晶層粗化技術 13
2-2、LED元件表面出光提升技術 14
2-2-1、透明導電層與電極 15
2-2-2、元件表面粗化 17
2-2-3、元件封裝技術 18
2-3、太陽電池效率提升技術 20
2-3-1、單晶矽長晶與粗化技術 26
2-3-2、抗反射層技術 29
第三章、元件製備材料與技術 33
3-1、氧化鋅(Zinc Oxide)材料簡介 33
3-2、水熱法成長氧化鋅奈米線技術 34
3-3、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)材料簡介 40
3-4、多孔PMMA模板技術 42
第四章、元件製備及實驗結果討論 47
4-1、實驗材料與設備介紹 47
4-1-1、實驗材料 47
4-1-2、實驗設備 49
4-2、多孔PMMA結構應用於GaN-基LED表面粗化技術 57
4-3、GaN-based LED元件光電特性量測結果 62
4-4、多孔PMMA結構應用於單晶太陽能電池抗反射層技術 65
4-5、單晶矽太陽能電池光電特性量測結果 68
第五章、結論與未來研究建議 73
5-1、結論 73
5-2、未來研究建議 74
參考文獻 76
[1]http://www.ngk.co.jp/english/news/2012/0425.html (NGK Insulators Ink.).
[2]http://www.ledinside.com.tw/intelligence/20110824-16609.html (LEDinside).
[3]http://www.osram.com/osram_com/index.jsp (OSRAM).
[4]http://ee.ofweek.com/2011-06/ART-8420-2803-28471957.html (Solid-State Lighting).
[5]Solid-State Lighting Research and Development: Multi-Year Program Plan, April 2012.
[6]http://www.lightingchina.com/zhuanti/070918-1/070918-1.htm (中國照明網).
[7]http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap10/chap10.htm (www.LightEmittingDiodes.org).
[8]http://blog.xuite.net/sweehan/story01/13687922
[9]田民波、呂宗輝、溫坤禮,白光LED照明技術,五南圖書出版有限公司,6月,2011。
[10]李偉吉,利用金屬反射基板與透明電極結構進行AlGaInP發光二極體外部量子效率改善之研究 ,國立成功大學微電子工程研究所碩士論文,2006。
[11]郭德明,具金屬反射基板之高功率垂直式磷化鋁銦鎵LEDs之研製,國立成功大學微電子工程研究所碩士論文,2007。
[12]http://www.faqs.org/sec-filings/101006/SemiLEDs-Corp_S-1.A/#b (Semileds).
[13]http://carolyoungco.big5.made-in-china.com/product/
(錫成股份有限公司).
[14]http://acade.must.edu.tw/upfiles/ADUpload/c23_downmul1302073784.pdf
[15]Martin A. Green, Jianhua Zhao, Aihua Wang, Thorsten Trupke “High-efficiency silicon light emitting diodes, Elsvier, Physica E 16, pp. 351 – 358, 2003.
[16]鄭竣謙,雙層抗反射膜覆蓋三接面三-五族太陽電池之研究,中原大學應用物理研究所碩士論文,2006。
[17]http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/illustr/i6_1_1.html
[18]http://pvcdrom.pveducation.org/DESIGN/SURFTEXT.HTM (UNSW).
[19]戴寶通、鄭晃中,“太陽能電池技術手冊,台灣電子材料與元件協會,6月,2006。
[20]蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊,廿七卷5期,10月,2005。
[21]方治國,第四次工業革命與奈米科技,宜大校訊,16期,p7,2007。
[22]丁嘉仁、許沁如、聶雅玉、張哲瑋,次波長結構抗反射膜片發展現況,機械工業雜誌,282期,p72,2006。
[23]http://www.ctci.org.tw/ct.asp?xItem=3031&ctNode=170 (財團法人中技社)
[24]林增興,氧化鋅奈米線應用於低操作電壓側向短間距真空場發射底閘極電晶體之研究,國立成功大學微電子工程研究所碩士論文,2010年。
[25]L. Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution, Adv. Mater., Vol. 15, no. 5, p. 464, 2003.
[26]Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth, Appl. Phsy. Lett., Vol. 92, p. 113505, 2008.
[27]M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back, IEEE Photonics technology Letters, Vol. 20, no. 15, p. 1293, 2008.
[28]K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide, J. Non-Cryst. Solid, Vol. 210, no. 48, p. 48, 1997.
[29]L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc., Vol. 113, no. 8, pp. 2826-??, 1991.
[30]L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B., Vol. 105, no. 17, p. 3350, 2001.
[31]L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides, Chemistry of Materials., Vol. 13, no. 2, p. 233, 2001.
[32]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc., Vol. 124, no. 44, p. 12954, 2002.
[33]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem., Vol. 115, p. 3139, 2003.
[34]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution, Chem. Mater., Vol. 17, p. 1001, 2005.
[35]K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution, J. Mater. Chem., Vol. 14, p. 2575, 2004.
[36]W. R. Zeng, S. F. Li, W. K. Chow, “Preliminary studies on burning behavior of polymethylmethacrylate (PMMA) , Journal of fire sciences Y., vol. 20, No. 4, pp. 297-317, 2002.
[37]Uwe Heiko Franz Bunz, “Breath Figures as a Dynamic Templating
Method for Polymers and Nanomaterials, Adv. Mater., Vol. 18, pp. 973–989, 2006.
[38]C. H. Lee, J. D. Chorlton, “Thermal Properties of Paris in the Powdered Form, NATURE, No. 4571, p. 1187, 1957.
[39]吳啟鏗,利用水熱法成長氧化鋅奈米線與雷射蝕刻技術提升垂直結構氮化鎵發光二極體光輸出之研究,國立成功大學微電子工程研究所碩士論文,2009年。
[40]Peter K. H. Ho, D. Stephen Thomas, Richard H. Friend, Nir Tessler, “All-Polymer Optoelectronic Devices, Science Vol. 285, p. 233, 1999.
[41]曾伯霜, “JSM-6700F HR-FESEM Opearation Manual, Department of Chemical Engineering National Cheng Kung University.
[42]Hartmut Gliemann, Arlete Tavares Almeida, Denise Freitas Siqueira Petri and Thomas Schimmel, “Nanostructure formation in polymer thin films influenced by humidity, Surf. Interface Anal. Vol. 39, pp. 1–8, 2007.
[43]http://techon.nikkeibp.co.jp/english/NEWS_EN/20120502/215896/
[44]http://elite-opto.blogspot.tw/2012/05/bridgelux-boost-efficiency-record-for.html
[45]http://big5.chinairn.com/news/20120409/925075.html
[46]http://www.libertytimes.com.tw/2012/new/apr/9/today-e20.htm
[47]http://www.eettaiwan.com/ART_8800658471_480102_NT_7030556f.HTM?jumpto=view_welcomead_1341982984377

電子全文 電子全文(網際網路公開日期:20211231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top