跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉秀峯
研究生(外文):Xiu-FengYe
論文名稱:二次光學於白光LED及太陽能電池之研發與應用
論文名稱(外文):Development of Secondary Optics for White Light-Emitting Diode and Solar Cell Applications
指導教授:莊文魁莊文魁引用關係
指導教授(外文):Ricky W. Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:112
中文關鍵詞:自由曲面透鏡非成像光學二次光學設計白光LED
外文關鍵詞:Freeform lensNon-imaging opticsSecondary optics designWhite LED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了改善所面臨到的能源浩劫與環境污染的問題,LED照明系統與太陽光收集器成為改善問題的核心部分,但光依靠單一的LED與太陽能電池是無法達到局部照明與太陽光大面積收集的目的,改善方式則是必須額外加上二次光學所設計的光學組件才能夠達成。然而在二次光學自由曲面透鏡的設計方法上,大多採取以複雜的數學模型來進行設計,此方式反而增加了設計上的困難與時間上的損耗。為了改善此缺點,本論文提供另一個設計自由曲面透鏡的方法,只需要簡單的數學方程式與旋轉光線搭配曲線交點上的垂直或水平切線就可以完成設計。為了驗證所提供的設計方法,分別設計了LED與太陽能電池兩個部分的自由曲面透鏡,並且利用光學模擬軟體TracePro與實驗量測結果相互比較來進行驗證。
首先在白光LED自由曲面透鏡設計部分利用TracePro模擬後,所推算出的配光曲線(polar candela distribution)為半角0°~42°的出光角度,而在實驗量測結果則得知配光曲線為半角0°~43°的出光角度,其模擬與實驗量測結果得知出光角度是一致的。
在太陽能電池自由曲面透鏡部分,主要設計目的則是專注在自由曲面透鏡必須有高均光性及局部聚光的優點,且透鏡的幾何集光倍率為100-sun。利用TracePro軟體在λ=550nm與AM1.5D的光源條件下模擬,其光學傳輸效率各自為81.5%與72.1%,而均勻度分別為94.83%與76.53%,之後再搭配自由曲面透鏡與單晶矽及III-V族三接面太陽能電池進行實驗量測,並且探討在不同的溫度與集光倍率下的量測,其量測結果顯示在III-V族三接面太陽能電池部份,其光電轉換效率為21.52%搭配自由曲面透鏡後可提升至25.53%。
In order to alleviate the energy and environmental pollution impacts being placed upon our society, efficient LED lighting systems and sunlight collector has steadfastly emerged to be the viable solutions we could rely upon. However, simply relying on a single LED and a solar cell alone may not be able to meet the expectations of lighting in a locally confined area and a large sunlight collection area, except a further improvement is adopted by incorporating the design of secondary optics. With regards to the secondary optics, a conventional wisdom is to rely on the secondary optical freeform lens design method by using a rather complex mathematical model entailed with the expenses of the added complexity and long design hours.
Therefore, in this thesis a new freeform lens design method is proposed based instead on a set of simple mathematical equations coupled with an innovative ray tracing technique by generating a two-dimensional freeform curve traced out by rotating either a reference vertical or horizontal tangential plane. In order to verify this ray tracing method, the two different freeform lenses are specifically designed and fabricated for the LED and solar cell, and a cross comparison is then established between the simulation and experimental results aided by the use of the optical TracePro simulation software.
First, the white LED freedom lens designed with TracePro theoretically demonstrates that its polar candela distribution of half-angle falls in a range of 0° to 42°, while the experimental measurement result verifies later that the polar candela distribution in terms of the half-angle is within a range between 0° and 43°. Notice that two sets of results agree quite nicely with each other. As for the solar cell, giving the combined advantages of the highly uniform irradiance, a locally light-converging capability and a geometrical concentration of 100× delivered by the freeform lens, the TracePro simulation has verified that with wavelength λ = 550nm and AM1.5D separately imposed, the resultant optical efficiencies simulated are as 81.5% and 72.1%, respectively, while the irradiance uniformity of the solar cell light absorption are obtained as 94.83% and 76.53%, respectively.
Finally, the single crystalline silicon and III-V compound semiconductor triple-junction solar cell coupled with the freeform lens are also measured by varying the temperature and the light concentration ratio. The measurement result has shown that for the III-V triple-junction solar cell, its conversion efficiency can be effectively enhanced from 21.52% to 25.53% when the freeform lens is incorporated.
中文摘要 I
英文摘要 III
致謝 VI
目錄 VII
圖目錄 X
第一章 序論
1.1 研究動機與目的 1
1.2 論文架構 5
參考文獻 6
第二章 幾何光學的基本定律
2.1 導論 8
2.2 光傳播的反射與折射現象 9
2.2.1 反射定律(Law of reflection) 11
2.2.2 折射定律(Law of refraction or Snell’s law) 12
2.2.3 全反射(Total reflection) 13
2.3 光線追跡法(Ray tracing) 14
參考文獻 18
第三章 自由曲面透鏡之設計理論
3.1 導論 19
3.2 反射部分設計 20
3.2.1 非透光性材料 20
3.2.2 透光性材料 22
3.3 折射部分設計 31
3.3.1 光線由低折射率介質至高折射率介質傳播 32
3.3.2 光線由高折射率介質至低折射率介質傳播 37
參考文獻 40
第四章 自由曲面透鏡設計與模擬結果分析
4.1 自由曲面透鏡應用於白光LED上之設計 41
4.1.1 出光角0~42°之自由曲面透鏡設計流程及方法 41
4.1.2 TracePro軟體模擬結果與分析 52
4.2 自由曲面透鏡應用於太陽能電池上之設計 58
4.2.1 非成像分區均光型自由曲面透鏡設計流程及方法 59
4.2.2 TracePro軟體模擬結果與分析 66
參考文獻 78
第五章 應用在白光LED及太陽能電池上的自由曲面透鏡製作與量測結果分析
5.1 PMMA材料穿透率、反射率與吸收量測 79
5.2 應用於白光LED之自由曲面透鏡量測結果與討論 83
5.3 應用於太陽能電池之自由曲面透鏡量測結果與討論 87
5.3.1 自由曲面透鏡搭配單晶矽太陽能電池量測結果與討論 89
5.3.2 自由曲面透鏡搭配III-V族三接面太陽能電池量測結果與討論 102
參考文獻 110
第六章 結論與未來進展
6.1 結論 111
6.2 未來進展 112
第一章
[1] Florian R. Fournier, William J. Cassarly, and Jannick P. Rolland, “Fast freeform reflector generation using source-target maps, Opt. Express, Vol. 18, No. 5, pp.5295-5340, Mar. 2010.
[2] Jinbo Jiang, Sandy To, W. B. Lee, and Benny Cheung, “Optical design of a freeform TIR lens for LED streetlight, Optik, Vol.121, pp. 1761-1765, Oct. 2010.
[3] L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications, Appl. Opt., Vol. 48, No. 29, pp.5520-5527, Oct. 2009.
[4] H. Ries, and J. Muschaeck, “Tailored freeform optical surfaces, J. Opt. Soc. Am. A, Vol. 19, No. 3, pp.590-595, Mar. 2002.
[5] Y. Ding, X. Liu, Z. Zheng, and P. Gu, “Freeform LED lens for uniform illumination, Opt. Express, Vol. 16, No. 17, pp.12958-12966, Aug. 2008.
[6] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination, Appl. Opt., Vol. 48, No. 35, pp.6627-6634, Dec. 2009.
[7] A. Domhardt, U. Rohlfing, S. Weingaertner, K. Klinger, D. Koob, K. Manz, and U. Lemmer, “New design tools for LED headlamps, Proc. SPIE, Vol. 7003, pp. 70032C-70032C-10, May 2008.
[8] John Bortz, Narkis Shatz, and Matthijs Keuper, “Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source, Proc. SPIE, Vol. 5529, pp.8-16, Sept. 2004.
[9] J. J. Chen, and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens, SPIE Opt .Eng., Vol. 49, pp.093001-1-093001-7, Sept. 2010.

第二章
[1] S. O. Kasap, “Optoelectronics and photonics: Principles and Practices, New Jersey: Prentice Hall, pp.11-16, 2001.
[2] Eugene Hecht, “Optics (4th Edition), Addison Wesley, 2001.

第三章
[1] X. Hao, Z. Zheng, X. Liu, and P. Gu, “Freeform surface lens design uniform illumination, J. Opt. A: Pure Appl. Opt., Vol. 10, No. 7, pp.075005-1-075005-6, Jul. 2008.
[2] H. Ries, and J. Muschaeck, “Tailored freeform optical surfaces, J. Opt. Soc. Am. A, Vol. 19, No. 3, pp.590-595, Mar. 2002.
[3] John Bortz, Narkis Shatz and, Matthijs Keuper, “Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source, Proc. of SPIE, Vol.5529, pp.8-16, Sept. 2004.
[4] Jae Young Joo, and Sun Kyu Lee, “Miniaturized TIR Fresnel Lens for Miniature Optical LED Applications, International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 2, pp.137-140, Apr. 2009.
[5] Y. Y. Chen, I J. Chen, A. J. W. Whang, and L. T. Chen, “Analysis of Die-Imaging and Yellow Hue Phenomena in LED TIR Lens, Proc. of SPIE, Vol. 7059, pp.70590O-70590O-11, Aug. 2008.

第四章
[1] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination, Opt. Express, Vol. 16, No.17, pp.12958-12966, Dec. 2008.
[2] Stefka Nikolova Kasarova, Nina Georgieva Sultanova, Christo Dimitrov Ivanov, and Ivan Dechev Nikolov, “Analysis of the dispersion of optical plastic materials, Opt. Materials, Vol. 29, pp.1481-1490, Sept. 2006.
[3] S. O. Kasap, “Optoelectronics and photonics: Principles and Practices, New Jersey: Prentice Hall, pp.255, 2001.
[4] K. Kreske, “Optical Design of a Solar Flux Homogenizer for Concentrator Photovoltaics, Appl. Opt., Vol. 41, pp.2053-2058, Apr. 2002.

第五章
[1] Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data, Solar Energy Material and Solar Cells, Vol. 90, No. 1 pp. 57-67, Jan. 2006.
[2] M. A. Mosalam Shaltout, M. M. El-Nicklawy, A. F. Hassan, U. A. Rahoma, and M. Sabry, “The temperature dependence of the sprectral and efficiency behavior of Si solar cell under low concentrated solar radiation, Renewable Energy, Vol. 21, pp. 445-458, Nov. 200.
[3] M.Cui, N. F. Chen, X. L. Yang, and H. Zhang, “Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell, Journal of Semiconductors, Vol. 33, No. 2, pp. 024006-1-024006-4, Feb. 2012.
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top