跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳丞恩
研究生(外文):Cheng-EnWu
論文名稱:以旋轉塗佈法成長閘極絕緣層應用於增強型砷化銦鎵金氧半場效電晶體
論文名稱(外文):Enhancement Mode In0.53Ga0.47As Metal Oxide Semiconductor Field Effect Transistors with Solution Processed Gate Insulator
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:砷化銦鎵高介電質溶膠凝膠法旋轉塗佈
外文關鍵詞:InGaAsHigh-κ dielectricSol-gelSolution processes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
高介電質材料鋯鈦酸鋇及二氧化鈦為氧化層應用在n通道增強型In0.53Ga0.47As金氧半場效電晶體已成功地被製作出。其中高介電質材料則是利用溶膠凝膠法,藉由溶膠凝膠方式則具有簡易製程、低成本、低溫以及薄膜具有高均勻性之優點。介電常數在鋯鈦酸鋇及二氧化鈦分別為6.67與19.3。根據X光繞射儀分析結果顯示出鋯鈦酸鋇及二氧化鈦皆為非晶向,藉此也證實此材料具有較小的顆粒邊界使得漏電流降低因此可應用在絕緣層的材料。此外,漏電流在1 A/mm2的條件下,使用鋯鈦酸鋇作為絕緣層時,逆向崩潰電場為 2.233 MV/cm、界面陷阱密度約為3.94 × 1012 cm-2eV-1。不過,使用二氧化鈦為絕緣層,逆向崩潰電場則可超過 3.501 MV/cm、界面陷阱密度則降到2.87 × 1012 cm-2eV-1。這些材料做為絕緣層應用於增強型金氧半場效電晶體中也可被製作出。
此外,利用鋯鈦酸鋇作為絕緣層的砷化銦鎵金氧半場效電晶體,通道長度為1.42微米,最大電流在閘極順偏電壓2 V為21.3 mA/mm、轉移電導為17.1 mS/mm、臨界電壓為0.488 V以及次臨界擺幅為288.85 mV/decade。然而,利用二氧化鈦作為絕緣層的電晶體,通道長度為1.57微米,最大電流在閘極順偏電壓2 V為45.4 mA/mm、轉移電導為94.3 mS/mm、臨界電壓為0.057 V以及次臨界擺幅為196.89 mV/decade。根據以上的數據可得知,使用二氧化鈦應用在砷化銦鎵金氧半場效電晶體上具有比鋯鈦酸鋇還要好的電特性,像是較高的最大電流、較高的轉移電導、較低的臨界電壓、較低的次臨界擺幅。

Enhancement mode In0.53Ga0.47As n-type metal-oxide-semiconductor field-effect transistors (MOSFET) with barium zirconate titanate (BZT) and TiO2 high-κ materials as gate dielectrics are presented. The high-κ gate dielectrics were prepared by sol-gel solution process, which has the advantages of simple process, low cost, low temperature, and high uniformity. The chemical composition of BZT confirmed by energy dispersive spectroscopy (EDS) was estimated as Ba0.89Zr0.96Ti0.08O3.05. The dielectric constant of BZT and TiO2 were 6.67 and 19.3, respectively. According to the XRD results, the BZT and TiO2 films were shown in amorphous phase, which also made these materials more reliable as insulators due to less grain boundaries with lower leakage current. Moreover, the reverse breakdown electrical field of 2.233 MV/cm measured at leakage current is 1 A/mm2 and interface trap density is 3.94 × 1012 cm-2eV-1 for the BZT/In0.53Ga0.47As, respectively, corresponding to 3.501 MV/cm and 2.87 × 1012 cm-2eV-1 in TiO2/In0.53Ga0.47As. Applications as gate dielectrics into the e-mode MOSFET as gate dielectrics are also fabricated.
Furthermore, the electrical characteristics of In0.53Ga0.47As n-type e-mode MOSFET with BZT gate dielectric are summarized as follows: maximum drain current of 21.3 mA/mm at VGS = 2 V, transconductance of 17.1 mS/mm, threshold voltage of 0.488 V, and subthreshold swing of 288.85 mV/decade. Moreover, the electrical characteristics of In0.53Ga0.47As nMOSFET with TiO2 gate dielectric are as follows: maximum drain current of 45.4 mA/mm at VGS = 2 V, transconductance of 94.3 mS/mm, threshold voltage of 0.057 V, and subthreshold swing of 196.89 mV/decade. Based on the above, the In0.53Ga0.47As MOSFET with TiO2 exhibited better electrical characteristics than BZT, such as higher maximum drain current, higher transconductance, smaller threshold voltage, and smaller subthreshold swing.

CONTENTS
ABSTRACT (Chinese)…………………I
ABSTRACT (English)…………………III
CONTENTS…………………V
FIGURE CAPTIONS…………………VIII
TABLE CAPTIONS…………………X

CHAPTER 1
Introduction
1.1 Introduction…………………001
1.2 High-κ Materials…………………002
1.3 Sol-Gel…………………007
1.4 Motivation…………………007
1.5 Organization of Dissertation…………………009

CHAPTER 2
Properties of Oxide and Fabrication of In0.53Ga0.47As MOSFET
2.1 Device Structure…………………011
2.2 Fabrication Processes…………………012
2.2.1 Solution Preparation for Gate Oxide…………………012
2.2.1.1 Hafnium Oxide…………………012
2.2.1.2 Barium Zirconate Titanate…………………012
2.2.1.3 Titanium Oxide…………………013
2.2.2 Enhancement Mode In0.53Ga0.47As n-MOSFET…………………015
2.2.2.1 Pre-processing Cleaning…………………015
2.2.2.2 Mesa Isolation…………………015
2.2.2.3 Au/Ge/Ni is Deposited to Form the Ohmic Contact…016
2.2.2.4 Gate-recess Region and Gate Oxide Deposit…………………017
2.2.2.5 Gold (Au) is Deposited to Form the Gate…………………017
2.3 Summary…………………025

CHAPTER 3
Physical Characteristics of Oxide and In0.53Ga0.47As
3.1 Physical Analyses of AFM…………………026
3.2 Physical Analyses of SEM…………………028
3.3 Physical Analyses of TEM…………………028
3.4 Physical Analyses of XRD…………………033

CHAPTER 4
Characteristics of In0.53Ga0.47As MOSFET with Different Gate Insulators Grown by Solution Processes
4.1 Results and Discussion…………………039
4.1.1 HfO2 as Insulator…………………039
4.1.1.1 Saturation Drain Current…………………039
4.1.1.2 Transconductance…………………039
4.1.1.3 Subthreshold Swing…………………040
4.1.2 BZT as Insulator…………………045
4.1.2.1 Saturation Drain Current…………………045
4.1.2.2 Transconductance…………………045
4.1.2.3 Subthreshold Swing…………………045
4.1.2.4 Gate Leakage Current…………………049
4.1.3 TiO2 as Insulator…………………051
4.1.3.1 Saturation Drain Current…………………051
4.1.3.2 Transconductance…………………051
4.1.3.3 Subthreshold Swing…………………051
4.1.3.4 Gate Leakage Current…………………055
4.2 Summary…………………057

CHAPTER 5
C-Voltage of Oxide/In0.53Ga0.47As Measurement and Discussion
5.1 Ideal C-V Curve Analysis…………………059
5.2 Charges in the Oxide…………………062
5.3 C-V Characteristics…………………065

CHAPTER 6
Conclusion
6.1 Conclusion…………………068
6.2 Future Work…………………071

References…………………073
[1] G. E. Moore, “Cramming more components onto integrated circuits, Electronics, vol. 38, no. 8, pp. 114-117, 1965.
[2] R. Chau, M. Doczy, B. Doyle, S. Datta, G. Dewey, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljević, “Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications, in ICSICT, vol. 1, pp. 26-30, 2004.
[3] S. M. Sze, “Semiconductor devices: physics and technology, Wiley & Sons Inc., pp.316-369, 1983.
[4] D. A. Neamen, “Semiconductor physics and devices, McGraw-Hill, 2003.
[5] K. Bjorkqvist and T. Arnborg, “Short Channel Effects in MOS-Transistors, Physica Scripta., vol. 24, no. 2, pp. 418-421, 1981.
[6] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., vol. 69, no. 2, pp. 327-396, 2006.
[7] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's, IEEE Electron Device Lett., vol. 18, no. 5, pp. 209-211, 1997.
[8] L. J. Lauho, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, vol. 420, pp. 57-61, 2002.
[9] Y.Cui, Z. Zhong, D.Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors, Nano Lett., vol. 3, no. 2, pp. 149-152, 2003.
[10] D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, “A fully depleted lean-channel transistor (delta)- a novel vertical ultrathin SOI MOSFET, IEEE Electron Device Lett., vol. 11, pp. 36-38, no. 1, 1990.
[11] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E, Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned duble-gate MOSFET scalable to 20 nm, IEEE Trans. Electron Device, vol. 47, no. 12 , pp.2320-2325, 2000.
[12] T. Ashley, A. B. Dean, C. T. Elliott, R. Jefferies, F. Khaleque, and T. J. Phillips, “High-speed low-power InSb transistors, IEDM Technical Digest, vol. 97, pp. 751-754, 1997.
[13] Y. Royter, K. R. Elliott, P. W. Deelman, R. D. Rajavel, D.H. Chow, I. Milosavljevic, and C. H. Fields, “High frequency InAs-channel HEMTs for low power ICs, IEDM Technical Digest, USA, vol. 03, pp. 731-734, 2003.
[14] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsendie passivation, Science, vol. 283, no. 5409, pp. 1897-1990, 1999.
[15] K. Iiyama, Y. Kita, Y. Ohta, M. Nasuno, S. Takamiya, K. Higashimine, and N. Ohtsuka, “ Fabrication of GaAs MISFET with nm-thin oxidized layer formed by UV and ozone process, IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 1856-1862, 2002.
[16] J. K. Yang, M. G. Kang, and H. H. Park, “Chemical and electrical characterization of Gd2O3/GaAs interface improved by sulfur passivation, J. Appl. Phys., vol. 96, no. 9, pp. 4811-4816, 2004.
[17] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition, IEEE Electron Device Lett., vol. 24, no. 4, pp. 209-211, 2003.
[18] R. Degraeve, N. Pangon, B. Kaczer, T. Nigam, G. Groeseneken, and A. Naem, “Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability, VLSI Sym.Tech.Dig., pp. 59-60, 1999.
[19] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage, Technical Digest, pp. 167-170, 1998.
[20] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing, J. Appl. Phys., vol. 94, no. 1, pp. 1-18, 2003.
[21] H. R. Huff, and D. C. Gilmer, “High dielectric constant materials, VLSI MOSFET applications, Springer, 2005.
[22] J. Robertson, “High dielectric constant oxides Eur. Phys. J. Appl. Phys., vol. 28, no. 3, pp. 265-192, 2004.
[23] S. P. Mukherjee, “Sol-gel processes in glass science and technology, J. Non-Cryst. Solids, vol. 42, no. 1-3, pp. 477-488, 1980.
[24] H. Dislich, and P. Hinz, “History and principles of the sol-gel process, and some new multicomponent oxide coatings, J. Non-Cryst. Solids, vol. 48, no. 1, pp. 11-16, 1982.
[25] D. P. Partlow, and B. E. Yoldas, “Colloidal versus polymer gels and monolithic transformation in glass-forming systems, J. Non-Cryst. Solids, vol. 46, no. 2, pp. 153-161, 1981.
[26] S. S. Li and W. R. Thurber, “The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon, Solid-State Electron., vol. 20, no.7 ,pp.609-616, 1977.
[27] V. I. Fistul, M. I. Iglitsyn and E. M. Omelyanovskii “Mobility of electrons in germanium strongly doped with arsenic, Sov. Phys. Solid State, vol. 4, no. 4, pp.784-785, 1962.
[28] Rode, D. L., “Semiconductors and semimetals, R. K. Willardson and A. C. Beer, eds., Academic Press, N.Y., vol. 10, pp. 1-89, 1975.
[29] J. D. Oliver, Jr., L. F. Eastman, P. D. Kirchner, and W. J. Schaff, “Electrical characterization and alloy scattering measurements of LPE GaxIn1-xAs/InP for high frequency device applications, J. Crystal Growth, vol. 54, no. 1, pp. 64-68, 1981.
[30] E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures, Phys. Status Solidi (b), vol. 106, no. 2, pp. 551-559, 1981.
[31] V. V. Karataev, M. G. Mil'vidski, N. S. Rytova, and V. I. Fistul', “Compensation in n-type InAs, Sov. Phys. Semicond., vol. 11, no. 9, pp. 1009-1011, 1977.
[32] Chia-Yu Wei, Wen-Chieh Huang, Chih-Kai Yang, Yen-Yu Chang, and Yeong-Her Wang, “Low operating voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators, IEEE Electron Device Lett., vol. 32, no. 13, pp. 1755-1758, 2011.
[33] Chia-Yu Wei, Shu-Hao Kuo, Wen-Chieh Huang, Yu-Ming Hung, Chih-Kai Yang, Feri Adriyanto, and Yeong-Her Wang, “High performance pentacene-based thin film transistors and inverters with solution-processed barium titanate insulators, IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 477-484, 2012.
[34] H. Xiao, “Intorduction to semiconductor manufacturing technology, Pearson, 2007.
[35] S. M. Sze, “Semiconductor devices: physics and technology, Wiley & Sons Inc., 1981.
[36] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs, IEEE Electron Device Lett., vol. 29, no. 11, pp. 1196-1198, 2008.
[37] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations, Appl. Phys. Lett., vol.73, no. 7, pp. 975-977, 1998
[38] H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing, Appl. Phys. Lett., vol. 86, no. 14, pp. 143505-1-143505-3, 2005.
[39] Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, “Inversion-channel GaN metal-oxide semiconductor field-effect transistor with atomic- layer-deposited Al2O3 as gate dielectric, Appl. Phys. Lett., vol. 93, no. 5, pp. 053504 - 053504-3, 2008.
[40] J. M. Wu and C. J. Chen, “Dielectric properties of (Ba, Nb) doped TiO2 ceramics: Migration mechanism and roles of (Ba, Nb), J. Mater. Sci., vol. 23, no. 11, pp. 4157-4164, 1988.
[41] Ivana, S. Subramanian, E. Y.-J. Kong, Q. Zhou, and Y.-C. Yeo, “Co-InGaAs as a novel self-aligned metallic source/drain material for implant-less In0.53Ga0.47As n-MOSFETs, ISDRS, pp. 1-2, 2011, college park, MD, USA.
[42] S. H. Kim, M. Yokoyama, N. Yaoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “Self-aligned metal source/drain InxGa1-xAs n-metal-oxide-semiconductor field-effect transistors using Ni-InGaAs alloy,Appl. Phys. Express, vol. 4, no. 2, pp. 024201-024201-3, 2011.
[43] E. H. Nicollian and J. R. Brews, “MOS (Mteal Oxide Semiconductor) physics and technology, New Jersey: Artech House, 1982.
[44] R. Lindner, “Semiconductor surface varator, The Bell System Technical Journal, vol. 41, pp. 803-831, 1962.
[45] S. M. Sze, “Semiconductor devices: physics and technology, Wiley & Sons Inc., pp.362-447, 1983.
[46] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: current status and materials properties considerations, J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top