跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏孝
研究生(外文):Po-HsiaoChen
論文名稱:低氫含量之氧化矽對非晶矽銦鎵鋅氧化物薄膜電晶體製程之影響
論文名稱(外文):Effects of Low Hydrogen Content in the Fabrication of Amorphous Indium-Gallium-Zinc-Oxide Thin-film Transistors
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:84
中文關鍵詞:IGZO薄膜電晶體高場效載子遷移率
外文關鍵詞:IGZO thin film transistorshigh saturation field-effect mobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
本實驗搭配低氫含量的氧化矽於Indium Gallium Zinc Oxide (IGZO)薄膜電晶體,已被証實有良好的薄膜電晶體特性由X-ray繞射量測分析可知,本研究中所使用的所有製程參數都會使得IGZO薄膜呈現非晶相的一個晶格結構,為較佳的IGZO薄膜結構。除此之外,也會使得IGZO薄膜在可見光範圍內,平均透光率都能達80%以上,能夠滿足透明電晶體的一個標準需求。而經由能量散射光譜分析分析,IGZO薄膜初期氧含量比例66.23%,製程中以低氫含量的氧化矽與IGZO薄膜搭配,主要減少在製程中氫原子與IGZO薄膜裡氧原子產生置換,避免IGZO薄膜特性由半導體變成導體,元件完成後再驗證IGZO氧含量比例58.1%,確認低氫含量氧化矽對於IGZO氧含量影響是將可以被降到最低的。
此外,透過原子力顯微鏡量測分析,可以得知低氫含量的氧化矽薄膜表面平整,其表面粗糙度Rrms值 1.52 nm,適合IGZO薄膜的成長,驗證了IGZO於低氫含量的氧化矽薄膜上的高載子傳輸特性。其元件的具有相當高的場效載子遷移率(13.75 cm2/Vs)、低臨界電壓(0.125 V),期待未來能將其應用到AMOLED的相關元件上。

Amorphous IGZO-based thin film transistors(TFTs) with a low hydrogen content silicon oxide (SiOx) as gate insulator layer are demonstrated. The IGZO film processed in this study are amorphous crystalline revealed by X-ray diffraction measurements and exhibit over 80% of transparency in the visible light range. During the deposition process of insulator such as SiOx or SiNx, the oxygen of IGZO thin film will be substituted by the high content of hydrogen, leading to the transformation of IGZO thin film from semiconductor to conductor. To prevent hydrogen in substitution for oxygen, low hydrogen content silicon oxide was applied in IGZO thin film transistor. From EDS analysis, the original oxygen content of IGZO thin film was measured to be 66.23%. After low hydrogen content silicon oxide deposition process, 58.1% of oxygen is remained in IGZO thin film. This proves that low hydrogen content silicon oxide has the minimum impact on the oxygen content of IGZO.
The smooth surface (1.52nm) of IGZO thin film confirmed by AFM measurement could facilitate IGZO thin film deposition, leading to the high mobility (13.75 cm2/Vs), low threshold voltage (0.125V). It is expected that the presented device could be applied to AMOLED related device in the future.


中文摘要 I
英文摘要 III
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論001
1.1 前言001
1.2 透明氧化物薄膜電晶體002
1.3 研究動機003
第二章 文獻與理論回顧006
2.1 非晶矽氧化薄膜電晶體的基本結構006
2.2 a-InGaZnO(IGZO)材料簡介009
2.3 a-IGZO各元素扮演的角色對電性之影響010
2.4 非晶氧化物的傳導機制012
2.5 a-IGZO薄膜電晶體的操作原理014
2.6 各項重要參數016
2.6.1 載子移動率(Mobility)016
2.6.2 臨界電壓(Threshold voltage)017
2.6.3 次臨界擺幅(Subthreshold swing)017
2.6.4 開關電流比(On/Off current ratio)018
2.6.5 接觸阻抗(Contact Resistance)018
第三章 設備原理及實驗流程022
3.1 實驗設備原理022
3.1.1 物理氣相沉積(Physical Vapor Deposition)022
3.1.2 化學氣相沉積(Chemical Vapor Deposition)024
3.1.3 SiOx、SiNx薄膜之CVD沉積原理與製程反應化學式026
3.1.4 退火烤箱設備028
3.2 實驗材料029
3.3 實驗步驟032
3.3.1 玻璃清洗032
3.3.2 閘極(Gate electrode)薄膜製作032
3.3.3 絕緣層(Gate Insulator layer)SiOx薄膜製作032
3.3.4 半導層(Semiconductor layer)IGZO薄膜製作032
3.3.5 蝕刻停止層(Etch Stop layer)SiOx薄膜製作033
3.3.6 保護層(Passivation layer)SiNx薄膜製作033
3.3.7 透明電極ITO薄膜製作033
3.4 量測儀器原理038
3.4.1 X-ray繞射量測(X-ray diffraction)038
3.4.2 紫外光與可見光光譜分析038
3.4.3 原子力顯微鏡量測(Atomic Force Microscopy)040
3.4.4 X光電子能譜分析040
3.4.5 霍爾量測041
3.4.6 能量散射光譜分析(Energy Dispersive Spectrometer)043
第四章 量測結果與討論047
4.1 結晶型態分析047
4.1.1 IGZO靶材X-ray繞射光譜分析047
4.1.2 IGZO薄膜X-ray繞射光譜分析048
4.1.3 SiNx與SiOx薄膜X-ray繞射光譜分析049
4.2 a-IGZO薄膜光穿透率分析051
4.3 表面型態分析054
4.3.1 a-IGZO表面型態054
4.3.2 絕緣層薄膜(SiNx與SiOx)表面型態054
4.4 元件電性量測059
4.4.1 SiOx(SiH4:N2O=1:3)和熱退火200℃電性059
4.4.2 SiOx(SiH4:N2O=1:3)和熱退火250℃電性060
4.4.3 SiOx(SiH4:N2O=1:100)和熱退火250℃電性060
4.4.4 SiOx(SiH4:N2O=1:1000)和熱退火250℃電性060
4.5 能量散射光譜分析結果068
4.6 分析與驗證070
4.6.1 重複量測穩定性070
4.6.2 通道長度與電流關係072
第五章 結論074
5.1 結論 074
5.2 未來展望075
參考文獻 079





[1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor, Science., vol. 300, pp. 1269, 2003.
[2] K. Nomura1, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono,“Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature., vol. 432, pp. 488, 2004.
[3] T. Kamiya, K. Nomura and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors, Science and Technology of Advanced Materials., vol. 11, pp. 044305, 2010.
[4] Z. Ji, J. Du, J. Fan, W. Wang, “Gallium oxide films for filter and solar-blind UV detector, Optical Materials., vol. 28, pp. 415–417, 2006.
[5] R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, “Optical, structural, and electrical properties of indium oxide thin films prepared by the sol-gel method, Journal of Applied Physics., vol. 82, pp. 865, 1997.
[6] R. Navamathavana, C. K. Choia, S. J. Park, “Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering, Journal of Alloys and Compounds., vol. 475, pp. 889-892, 2009.
[7] G. Gordillo, C. Calderon, “Properties of ZnO thin films prepared by reactive evaporation, Solar Energy Mater and Solar Cells., vol. 69, pp. 251–260, 2001.
[8] T. Kamiya, Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, M. Hirano, H. Hosono, “Self-Adjusted, Three-Dimensional Lattice-Matched Buffer Layer for Growing ZnO Epitaxial Film: Homologous Series Layered Oxide, InGaO3(ZnO)5, Crystal Growth and Design., vol. 6, pp. 2451-2456, 2006.
[9] H. Hosono, “Transparent Amorphous Oxide Semiconductors (TAOS) for High Performance TFTs, Symposium Digest of Technical Papers., vol. 38, Issue 1, pp. 1830-1833, 2007.
[10] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, Journal of Non-Crystalline Solids., vol. 352, pp. 851-858, 2006.
[11] J. Robertson, “Disorder, band offsets and dupability of transparent conducting oxides, Thin Solid Films., vol. 516, pp. 1419-1425, 2008.
[12] K. Nomura, A. Takagi, T. Kamiya, H. Ohya, M. Hirano, H. Hosono, “Amorphous Oxide Semiconductor Towards High-Performance Flexible Thin-Film Transistors, Japanese Journal of Applied Physics., vol. 45, pp. 4303-4308, 2006.
[13] S. M. Sze, “Semiconductor Devices-Physics and Technology, John Wiley & Sons, 1985.
[14] A. Sato, K. Abe, R. Hayashi1, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H.Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor, Applied Physics Letters., vol. 94, pp. 133502, 2009.
[15] T. Gao, Y. Masuda, K. Koumoto, “Band Gap Energy of SrTiO3 Thin Film Prepared by the Liquid Phase Deposition Method, Journal of the Korean Ceramic Society., vol. 40, pp. 213-218, 2003.
[16] L. L. Jiang, X. G. Tang, S. J. Kuang, and H. F. Xiong, “Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition, Appl. Surf. Sci., vol. 255, pp. 8913, 2009.
[17] M. Orita, M. Takeuchi, H. Sakai, H. Tanji, “New Transparent Conductive Oxides with YbFe2O4 Structure, Japanese Journal of Applied Physics., vol. 34, Issue 11B, pp. L1550-L1552, 1995.
[18] M. Nespolo, A. Sato, T. Osawa and H. Ohashi, “Crystal Research and Technology, vol. 35, Issue 2, pp. 151-165, 2000.
[19] G. B. Gonzalez, J. B. Cohen, J. H. Hwang, T. O. Mason, J. P. Hodges and J. D. Jorgensen, “Neutron diffraction study on the defect structure of indium–tin–oxide, Journal of Applied Physics., vol. 89, pp. 2550-2555, 2001.
[20] J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin and Y. G. Mo, “The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors, Applied Physics Letters., vol. 95, pp. 123502, 2009.
[21] B. S. Jeong, C. M. Park, M. G. Kim, H. J.Chung, T. K. Ahn, S. K Heo, J. H. Jeong, M. K. Kim, H. H. Park, J. M. Huh, Y. G. Mo, H. D. Kim and S. S. Kim, “Effect of Passivation Layer Properties on the Performance of Oxide TFTs, IMID Symposium Digest., pp. 1040-1043, 2009.
[22] C. Y. Tseng, C. Y. Su, S. L. Lin, G. R. Hu, M. C. Wei, M. F. Chiang and W. L. Liau, “6 inch EPD with a-IGZO TFT on the PEN substrate, IDMC’11., ps-053, 2011.
[23] Y. J. Chung, J. H. Kim, U. K. Kim, D. Y. Cho, H. S. Jung, J. K. Jeong and C. S. Hwang, “Direct Observation of Hole Current in Amorphous Oxide Semiconductors under Illumination, Electrochemical and Solid-State Letters., vol. 14, pp. G35-G37, 2011.
[24] J. H. Kim, U. K. Kim, Y. J. Chung, J.S. Jung and S. H. Ra, “ The effects of device geometry on the negative bias temperature instability of Hf-In-Zn-O thin film transistors under light illumination, Applied Physics Letters., vol. 98, pp. 023507, 2011.
[25] J. Song, H. C. Oh, T. J. Park, C. S. Hwang, S. H. K. Park, S. M. Yoon and C. S. Hwang, “Properties of MIS Capacitors Using the Atomic-Layer-Deposited ZnO Semiconductor and Al2O3 Insulator, Journal of The Electrochemical Society., vol. 155, pp. H858-H863, 2008.
[26] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor, Applied Physics Letters., vol. 96, pp. 242105, 2010.
[27] H. H. Lu, H. C. Ting, T. H. Shih, C. Y. Chen, C. S. Chuang and Y. Lin, “32-inch LCD Panel Using Amorphous Indium-Gallium-Zinc-Oxide TFTs, SID Symposium Digest., vol. 41, Issue 1, pp. 1136-1138, 2010.
[28] J. S. Lee, S. Chang, S. M. Koo and S. Y. Lee, “High-Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature, IEEE Electron Device Letters., vol. 31, Issue 3, pp. 225-227, 2010.
[29] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper, Applied Physics Letters., vol. 90, pp. 212114, 2007.
[30] C. Y. Lin , Y. H. Yeha, C. C. Cheng, C. M. Lai, M. J. Yu , S. E. Liu , G. T. Ho , H. T. Lin and C. C. Wu, “2.2-inch QQVGA AMOLED driven by low temperature top-gate a-IGZO TFT, IEEE Photonics Society., pp. 307-308, 2010.
[31] R. I. Kondratyuk, K. Im, D. Stryakhilev, C. G. Choi, M. G. Kim, H. Yang, H. Park, Y. G. Mo, H. D. Kim and S. S. Kim, “A Study of Parasitic Series Resistance Components in In–Ga–Zn–Oxide (a-IGZO) Thin-Film Transistors, IEEE Electron Device Letters., vol. 32, issue 4, pp. 503-505, 2011.
[32] T. C. Fung, K. Abe, H. Kumomi and J. Kanicki, “ Electrical Instability of RF Sputter Amorphous In-Ga-Zn-O Thin-Film Transistors, Journal of Display Technology., vol. 5, Issue 12, pp. 452-461,2009.
[33] T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Nakayama, T. Yamaguchi and T. Sasaoka, “Highly Reliable Oxide-Semiconductor TFT for AM-OLED Display, SID Symposium Digest., vol. 41, Issue 1, pp. 1033-1036, 2010.
[34] N. Morosawa, Y. Ohshima, M. Morooka, T. Arai and T. Sasaoka, “A Novel Self-Aligned Top-Gate Oxide TFT for AM-OLED Displays, SID Symposium Digest of Technical Papers., vol. 42, Issue 1, pp. 479-482,2011.
[35] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor, Applied Physics Letters., vol. 94, pp. 133502, 2009.
[36] Dae-ho Son, Dae-Hwan Kim*, Shi-Joon Sung, Eun-Ae Jung, Jin-Kyu Kang, “High performance and the low voltage operating InGaZnO thin film transistor, Current Applied Physics., vol 10, Issue 4, pp. e157–e160, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top