|
[1] Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition. Academic Press, Inc., Boston, second edition [2] Sugiyama, M. (2007) Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. Journal of Machine Learning Research, vol.8, pp.1027-1061. [3] He, X. & Niyogi, P. (2004) Locality Preserving Projections. Advances in Neural Information Processing Systems 16 [4] Ratsch, G., Onoda, T. & Muller, K.-R (2001) Soft Margins for Adaboost. Machine Learning vol.42, pp.287-320 [http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark] [5] Frank, A.&Asuncion, A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science [6] Vapnik, V. N. (1998) Statistical Learning Theory. Wiley, New York [7] Duda, R., Hart, P. & Stor, D. (2001) Pattern Classification. Wiley, New York [8] Ham, J., Lee, D. D., Mika, S. & Scholkopf. (2004) A kernel view of the dimensionality reduction of manifolds. In Proceedings of the Twenty-First International Conference on Machine Learning, New York, NY. [9] Cai, D., Han, J., He, X., Zhou, K. & Bao, H. (2007) Locality Sensitive Discrminant Analysis. In Proceeding of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI) [10] Chen, H-T., Chang, H-W. & Liu, T-Y. (2005) Local Discriminant Embedding and its Variants. In Proceeding of the Eighteenth IEEE Conference on Computer Vision and Pattern Recognition. (CVPR) [11] Yan, S., Xu, D., Zhang, B. & Zhang, H-J. (2005) Graph Embedding: A General Framework for Dimensionality Reduction. In Proceeding of the Eighteenth IEEE Conference on Computer Vision and Pattern Recognition. (CVPR) [12] Na, J. H., Park, M. S., & Choi, J. Y. (2009) Linear Boundary Discriminant Analysis. Pattern Recognition. [13] Goldberger J., Roweis S., Hinton, G. & Salakhutdinov, R. (2005) Neighbourhood Components Analysis. Advances in Neural Information Processing Systems 17
|