跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱伊禕
研究生(外文):Yi-IChiu
論文名稱:以高維球做輔助的判別分析法
論文名稱(外文):Hypersphere Distribution Discriminant Analysis
指導教授:羅錦興羅錦興引用關係詹寶珠詹寶珠引用關係
指導教授(外文):Ching-Hsing LuoChing-Hsing Luo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:30
中文關鍵詞:判別分析法線性降維
外文關鍵詞:dimensionality reduction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中我們提出了一種新穎的線性降維判別分析法。藉由判斷鄰近空間中異質點的多寡及分布狀況,每一對同質點被給予不同的權重。此權重矩陣可決定一對同質點在新空間中是否可以被投影靠近。此方法成功的改善了過去判別分析法只根據同質點間距離規定在新空間的投影而產生的類別混雜問題。在圖形識別與二維資料分布上都得到較好的結果。
Many supervised linear dimensionality reduction methods face tradeoffs when deciding to preserve the within-class multimodality or to achieve a better between-class separation. These algorithms tend to preserve the neighborhood structure in the original space, and leave the determination to the optimization process. In this paper, we propose Hypersphere Distribution Discriminant Analysis (HDDA) to determine the projection of samples in the same class by defining a new within-class affinity matrix. This matrix is based on the distribution of nearby samples in different classes (heteropoints). When more heteropoints appear in the neighborhood space between a pair of the within-class samples, this pair should be projected separately to avoid mixing problems. Otherwise, the pair could be either projected together or not as long as better accuracy achieved. Considering both the distribution of heteropoints and the distance between the within-class pairs, HDDA shows effective results compared with the state of the art methods.
1 Introduction 1
2 Related Works 4
2.1 Frameworks of Linear Dimensionality Reduction 4
2.2 Linear Discriminant Analysis 4
2.3 Locality Preserving Projection 5
2.4 Local Fisher Discriminant Analysis 6
2.5 Local Sensitive Discriminant Analysis 8
2.6 Summary 9
3 Hypersphere Distribution Discriminant Analysis 10
3.1 Building the affinity matrix 10
3.2 Hypersphere Distribution Discriminant Analysis 13
3.2.1 Build the distribution matrix H with hyperspheres 13
3.2.2 Construct the new within-class affinity matrix A 13
3.2.3 Compute the transformation matrixW 14
3.3 Justification of the Weighting Fucntion 14
4 Justification and Extensions 17
4.1 Justification on Pointwise LDA 17
4.2 Kernel HDDA 18
5 Experimental Results 19
5.1 Synthetic Data 19
5.2 Classification for IDA Datasets 19
5.3 2D Data Visualization 21
6 Conclusion 28
7 Reference 29
[1] Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition. Academic Press, Inc., Boston, second edition
[2] Sugiyama, M. (2007) Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. Journal of Machine Learning Research, vol.8, pp.1027-1061.
[3] He, X. & Niyogi, P. (2004) Locality Preserving Projections. Advances in Neural Information Processing Systems 16
[4] Ratsch, G., Onoda, T. & Muller, K.-R (2001) Soft Margins for Adaboost. Machine Learning vol.42, pp.287-320 [http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark]
[5] Frank, A.&Asuncion, A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science
[6] Vapnik, V. N. (1998) Statistical Learning Theory. Wiley, New York
[7] Duda, R., Hart, P. & Stor, D. (2001) Pattern Classification. Wiley, New York
[8] Ham, J., Lee, D. D., Mika, S. & Scholkopf. (2004) A kernel view of the dimensionality reduction of manifolds. In Proceedings of the Twenty-First International Conference on Machine Learning, New York, NY.
[9] Cai, D., Han, J., He, X., Zhou, K. & Bao, H. (2007) Locality Sensitive Discrminant Analysis. In Proceeding of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI)
[10] Chen, H-T., Chang, H-W. & Liu, T-Y. (2005) Local Discriminant Embedding and its Variants. In Proceeding of the Eighteenth IEEE Conference on Computer Vision and Pattern Recognition. (CVPR)
[11] Yan, S., Xu, D., Zhang, B. & Zhang, H-J. (2005) Graph Embedding: A General Framework for Dimensionality Reduction. In Proceeding of the Eighteenth IEEE Conference on Computer Vision and Pattern Recognition. (CVPR)
[12] Na, J. H., Park, M. S., & Choi, J. Y. (2009) Linear Boundary Discriminant Analysis. Pattern Recognition.
[13] Goldberger J., Roweis S., Hinton, G. & Salakhutdinov, R. (2005) Neighbourhood Components Analysis. Advances in Neural Information Processing Systems 17
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top