跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王奕鈞
研究生(外文):Yi-ChunWang
論文名稱:掺氧之釕薄膜對銅阻障效果之研究
論文名稱(外文):Investigations of Oxygen Added Ruthenium Film as ACopper Diffusion Barrier
指導教授:彭洞清
指導教授(外文):Dung-Ching Perng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:68
中文關鍵詞:銅製程銅擴散阻障層釕阻障層掺氧釕金屬
外文關鍵詞:Cu MetallizationCu Diffusion BarrierRu AlloyRuO alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
為了滿足摩耳定律(Moores Law)的情況下,元件尺寸不斷的縮小,元件速度加快,元件數量越來越龐大,銅製程技術已取代傳統鋁製程來解決電阻-電容延遲效應(R-C time delay)問題。銅的優勢在於有很低的電阻率,但銅在介電層(dielectric)中卻有很高的移動性跟反應性,所以必須在銅和介電層中加入一層阻障層來阻擋其反應及擴散。

釕金屬已被證實不需銅種晶層可以直接電鍍銅,然而釕金屬薄膜
為柱狀結構(Columnar microstructure) , 此結構提供許多垂直晶粒邊界(Grain boundaries),會使銅原子經由此晶粒邊界大量、快速地擴散至介電層中,導致元件可靠度下降。

本論文利用含氧濺鍍的方式,來改變釕金屬的晶柱狀結構。片電阻跟XRD 的量測結果指出,掺了氧之釕金屬薄膜,為非晶結構,有效地提昇了對銅的阻擋特性,並提高釕薄膜之熱穩定度達200 ℃。
In order to meet Moore’s law, the traditional Al process had been replaced by the Cu dual damascene process to solve RC delay issues for faster chip speed and denser devices. Copper (Cu) could provide low resistivity, but Cu reacts with dielectric materials easily, its high diffusion coefficient and poor adhesion raises reliability concerns. Therefore, adding a diffusion barrier layer in between the Cu and the dielectric is necessary to enhance the interconnect reliability.

Ru could be a potential candidate as a copper diffusion barrier due to its low bulk resistivity and excellent adhesion with copper. The low solubility between Cu and Ru also leads to negligible inter-diffusion between each other.
Moreover, a Ru film is capable of direct electroplating copper film without a copper seed layer. However, Ru thin film exhibits columnar grain structure which is normal to the interface between Cu, the Ru grain boundaries provide
fast diffusion paths for Cu to penetrate through it causing reliability issues.

This thesis focuses on modifying Ru columnar micro-crystalline structure and therefore improved its capability as a Cu diffusion barrier. Ru film with Ar and O2 was sputtered in different flow rate ratio, the use of O2 gas inhibits the Ru atoms to form micro-grains. The XRD result indicate that as-deposited O2 added Ru film exhibits an amorphous-like structure. It effectively improves barrier properties against Cu diffusion and it’s thermally stability is 200oC superior to a pure Ru film.
Contents Abstract (in Chinese)………………………4
Abstract (in English) …………………………………………5
Acknowledge………………………………………………………7
Contents……………………………………………………8
Figure Captions……………………………………………………10
Chapter 1: Introduction ............................12
1.1. Overview………………………………………….12
1.2. Cu Metallization………………………12
1.3. Dielectric Challenge………………………………15
1.4. R-C Delay Effect…………………………………………16
1.5. Integration Challenges………………………………18
Chapter 2: Diffusion Barrier .......................22
2.1. Diffusion Mechanism……………………22
2.2. Basic Requirement of Cu Diffusion Barrier……………26
2.3. Motivation of This Thesis……………………………29
Chapter 3: Experimental Scheme………………………………32
3.1. Process Materials ..............................32
3.2. Process Instruments ........................33
3.2.1. Sputter System .........................33
3.2.2. Rapid Thermal Annealing System ..................34
3.3. Analysis Instruments .........................36
3.3.1. Four Point Probe System ........................36
3.3.2. Xray Diffraction (XRD) ..........37
3.3.3. Scanning Electron Microscopy………………39
3.3.4. Xray
Photoelectron Spectrometer (XPS) .......................41
3.4. Experimental Methods and Procedures..............................................43
3.4.1 Wafer cleaning steps and sample preparation ...... 43
3.4.2 Sputter process of the barrier layer ............43
3.4.3 Sputter process of Cu layer ................. 43
3.4.4 Annealing process ......................... 44
Chapter 4: Experiment Results and Discussion…………50
4.1. Process Procedure………………………………………50
4.2. Sheet Resistance Measurements……………………51
4.3. X-Ray Diffraction Patterns of Stacked Films…………53
4.4. SEM Observations…………………………………53
4.5. The Depth Profiling Analysis………………………54
4.6. Electrical Property…………………………………………55
Chapter 5: Conclusions and Future Work……………62
5.1. Conclusions………………………………………62
5.2. Future Work………………………………………………62
Reference...............64
[1].D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T.McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L.Su, S. Luce, and J. Slattery, Full copper wiring in a sub-0.25 μm CMOS ULSI technology, IEEE International Electron Devices Meeting (IEDM), (1997)……………………13
[2].S. P. Murarka, Multilevel interconnections for ULSI and GSI era, Materials Science and Engineering: R: Reports, 19, (1997), pp.87-151...........................13
[3].S. P. Murarka, I. V. Verner, and R. J. Gutmann, Copper-fundamental mechanisms for microelectronic applications. John Wiley & Sons, New York, (2000)……………………14
[4].C. J. Smithells and E. A. Brandes, Metals reference book, 5th ed., Butterworths, London; Boston, (1976)……14
[5].M.T. Bohr, “Interconnect scaling‐the real limiter to high performance ULSI, in proc. IEEE International Electron Devices Meeting, 1995, pp. 241‐244…………………15
[6].G. Schindler, W. Steinhogl, G. Steinlesberger, M. Traving, and M. Engelhardt, Scaling of parasitics and delay times in the backend‐of‐line, Microelectron. Eng., vol. 70, no. 1, pp. 7‐12, Oct. 2003…………………15
[7].M. Baklanov, K. Maex and M. Green, Dielectric films for advanced microelectronics. Chichester, West Sussex, England: John Wiley & Sons, 2007………………………………15
[8].S. P. Murarka, I. V. Verner and R. J. Gutmann, Copper‐fundamental mechanisms for microelectronic applications, New York: John Wiley & Sons, 2000…………………………15
[9].K. Wetzig and C. M. Schneider, Metal based thin films for electronics, 2nd ed., Weinheim: Wiley‐VCH, 2006………15
[10].D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, Full copper wiring in a sub‐0.25 μm CMOS ULSI technology, in proc. IEEE International Electron Devices Meeting, pp. 773‐776,1979……………………………15
[11].C. J. Smithells and E. A. Brandes, Metals reference book, 5th ed., London; Boston: Butterworths, 1976…………………………………15
[12].S. P. Murarka, Low dielectric constant materials for interlayer dielectric applications, Solid State Technol., vol. 39, no.3, pp. 83‐90, Mar. 1996……………………………15
[13].S. P. Murarka, M. Eizenberg, and A. K. Sinha, Interlayer dielectrics for semiconductor technologies. Elsevier/Academic Press, Amsterdam; Boston, (2003)………………………………………………16
[14].W. W. Lee, P. S. Ho, and J. Leu, Low dielectric constant materials for IC applications. Springer, Berlin ; New York, (2003)……………………16
[15].G. Schindler, W. Steinhogl, G. Steinlesberger, M. Traving, and M. Engelhardt, Scaling of parasitics and delay times in the backend-of-line, Microelectronic Engineering, 70, (2003), pp.7-12…………………………16
[16].M. T. Bohr, Interconnect scaling-the real limiter to high performance ULSI, IEEE International Electron Devices Meeting (IEDM), (1995)…………………………17
[17].G. Schindler, W. Steinhogl, G. Steinlesberger, M. Traving, and M. Engelhardt, Scaling of parasitics and delay times in the backend‐of‐line, Microelectron. Eng., vol. 70, no. 1, pp. 7‐12, Oct. 2003…………………20
[18].R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, and T.Q. Hurd,“Diffusion studies of copper on ruthenium thin film a plateable copper diffusion barrier, Electrochem. Solid State Lett., vol. 7, no. 8, pp.G154‐G157, May 2004…………………………………………20
[19].T.N. Arunagiri, Y. Zhang, O. Chyan, M. El‐Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, and L.C. Chen, 5 nm ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett., vol. 86, no. 8, p. 083104, Feb. 2005………………………………20
[20].M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, Ruthenium barrier/seed layer for Cu/low‐k metallization: crystallographic texture, roughness, diffusion, and adhesion, J. Electrochem. Soc., vol. 153, no. 6, pp. J41‐J45, Apr. 2006………………20
[21].A.E. Kaloyeros and E. Eisenbraun, “Ultrathin diffusion barriers/liners for gigascale copper metallization, Annu. Rev. Mater. Sci., vol. 30, pp. 363‐385, Aug. 2000………………………………………26
[22].K. Wetzig and C.M. Schneider. Metal based thin films for electronics. Weinheim: Wiley‐VCH, 2003…………………26
[23].H.Y. Wong, N.F.M. Shukor, and N. Amin, “Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., vol. 38, no. 6‐7, pp. 777‐782, Jun. 2007……………………………27
[24].S. Franssila,“Introduction to Microfabrication, Wiley‐VCH, Finland, (2004)…………………………………36
[25].H. Bubert and H. Jenett, Surface and thin film analysis: a compendium of principles, instrumentation, applications. Wiley‐VCH, Weinheim, (2002)……………………37
[26]. M. Birkholz, P. F. Fewster, and C. Genzel, Thin film analysis by X‐ray scattering. Wiley‐VCH, Weinheim, (2006)…………………………………37
[27].O.C. Wells, Scanning electron microscopy. McGraw‐Hill, New York, (1974)………………………………39
[28].J.I. Goldstein, C.E. Lyman, D.E. Newbury, E. Lifshin, P. Echlin, L. Sawyer, D.C. Joy, and J. R. Michael, “Scanning Electron microscopy and X‐ray microanalysis, 3th ed., Kluwer Academic, New York, (2003)…………………39
[29].H. Bubert and H. Jenett, “Surface and Thin Film Analysis, Wiley‐VCH, Weinheim, (2002)…………………41
[30].J.J. Tan, X.P. Qu, Q. Xie, Y. Zhou, and G.P. Ru, The properties of Ru on Ta‐based barriers, Thin Solid Films, vol. 504, no. 1‐2, pp. 231‐234, May 2006……………………51
[31].J.S. Kwak, H.K. Baik, J.H. Kim, and S.M. Lee, “Suppression of silicide formation in Ta/Si system by ion‐beam‐assisted deposition, Appl. Phys. Lett., vol. 71, no. 17, pp. 2451‐2453, Oct. 1997……………………51
[32].T.Y. Lin, H.Y. Cheng, T.S. Chin, C.F. Chiu, and J.S. Fang, 5‐nm‐thick TaSiC amorphous films stable up to 750 °C as a diffusion barrier for copper metallization, Appl. Phys. Lett., vol. 91, no. 15, p. 152908, Oct. 2007………………………………………………………………51
[33].P. Majumder, R. Katamreddy and C. Takoudis, “Atomic layer deposited ultrathin HfO2 and Al2O3 films as diffusion barriers in copper Interconnects, Electrochem. Solid‐State Lett., vol. 10, no. 10, pp.H291‐H295, Jul. 2007………………………………………………………51
[34].Y. Matsui, Y. Nakamura, Y. Shimamoto, and M. Hiratani, An oxidation barrier layer for metal‐insulator‐metal capacitors: Ruthenium silicide, Thin Solid Films, vol. 437, no. 1, pp. 51‐56, Aug. 2003…………………51
[35].T.N. Arunagiri, Y. Zhang and O. Chyan, 5 nm ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett., vol. 86, no. 8, p. 083104, Feb. 2005……………51
[36].R.S. Brusa, M. Spagolla, G.P. Karwasz, A. Zecca, G. Ottaviani, F. Corni, M. Bacchetta, and E. Carollo, Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy, J. Appl. Phys., vol. 95, no. 5, pp. 2348‐2354, Mar. 2004……………54
[37].R. Rosenberg, D.C. Edelstein, C.‐K. Hu, and K.P. Rodbell, “Copper metallization for high performance silicon technology, Annu. Rev. Mater. Sci., vol. 30, pp. 229‐262, Aug. 2000………………………………………54
[38].Y. Wang, F. Cao, Z. Song and C.H. Zhaoa, “Application of Zr‐Si Film as Diffusion Barrier in Cu Metallization, Electrochem. Solid State Lett., vol. 10, no. 10, pp. H299‐H301, Jul. 2007………………………………………54
[39].T. Fukuda, H. Nishino and H. Yanazawa, “Analysis of leakage current of low‐k materials for use as interlayer dielectric, Jpn. J. Appl. Phys., vol. 43, no. 1, pp. 86‐90, Jan. 2004………………………………………55

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top