跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉凡碩
研究生(外文):Fan-ShuoLiu
論文名稱:(Mg1-xZnx)4Ta2O9陶瓷材料之微波介電特性改善與應用
論文名稱(外文):Improved and Applications of (Mg1-xZnx)4Ta2O9 Microwave Dielectric Material
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:微波介電特性High-Q微波介電陶瓷
外文關鍵詞:Microwave dielectric propertiesHigh-Q microwave dielectric ceramics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且嘗試添加燒結促進劑降低其燒結溫度;第二部份將介紹其在被動元件之應用,並實作於不同基板上,用以探討元件尺寸的改善。
第一部份首先要介紹(Mg1-xZnx)4Ta2O9陶瓷系統之微波介電特性。由實驗中可得知(Mg1-xZnx)4Ta2O9在1460°C燒結4小時可獲得最佳之介電特性 ~ 12.6,Q׃~ 385,000,τf ~ –61.9 ppm/°C。並且,我們試著在(Mg0.95Zn0.05)4Ta2O9中添加0.5–2 wt%的燒結促進劑B2O3,來降低其燒結溫度,以期達到降低製作成本,增加微波材料的應用性。
第二部份我們設計及實作一操作在2.4 GHz的微帶線帶通濾波器,二階混和耦合髮夾式帶通濾波器為主體,利用SIR(Stepped-impedance resonators)結構產生不同的阻抗比,進而抑制二倍頻效應。最後,我們將此電路實作在FR4、氧化鋁和(Mg0.95Zn0.05)4Ta2O9–0.5 wt% B2O3基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。

There are two main subjects in this thesis. First, we will discuss the low loss dielectric material, and try to add sintering aids in order to decrease the sintering temperature. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
First, we discuss the microwave dielectric properties of (Mg1–xZnx)4Ta2O9 (x = 0.02–0.08) ceramics. In our experiment, the composition (Mg0.95Zn0.05)4Ta2O9 sintered at 1460°C for 4 hours has better microwave dielectric properties with an of 12.6, an extremely high Qf of 385,000 GHz, and a of –61.9 ppm/°C. Addition of B2O3 can lower the sintering temperatures of specimens, whereas it also degrades the Qf values. The experiment result showed that (Mg0.95Zn0.05)4Ta2O9–0.5 wt% B2O3 have the best microwave dielectric properties.( of 12.3, an extremely high Qf of 319,000 GHz, and of –59.1 ppm/°C).
Second, we design and fabricate a microstrip band-pass filter which operation at 2.4 GHz. The filter was constructed by second-order hybrid coupling hairpin-line bandpass filter. In order to control suppress the spurious response, the filter using SIR (step impedance resonator) structure have been designed. Finally, the pattern was printed on FR4, Al2O3 and (Mg0.95Zn0.05)4Ta2O9–0.5 wt% B2O3 substrates. The frequency response of measurement results, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.

摘要 Ⅰ
Abstract Ⅱ
誌謝 Ⅳ
目錄 Ⅴ
圖目錄 Ⅸ
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 介電材料原理 3
2-1 介電材料之微波特性 3
2-1-1介電係數(Dielectric constant:K、εr) 3
2-1-2品質因數(Quality factor:Q) 7
2-1-3共振頻率溫度飄移係數(Temperature coefficient of resonant
frequency:τf) 9
2-2介電共振器(Dielectric resonator:DR)原理 10
2-3 Corundum結構 15
2-4材料的燒結 17
2-4-1燒結的種類 17
2-4-2材料燒結之擴散方式 19
2-4-3材料燒結之過程 20
第三章 微帶線及濾波器原理 21
3-1 濾波器原理 21
3-1-1濾波器的簡介 21
3-1-2濾波器之種類及其頻率響應 22
3-2 微帶線原理 25
3-2-1 微帶傳輸線的簡介 25
3-2-2 微帶線的傳輸模態 26
3-2-3 微帶線各項參數公式計算及考量 27
3-2-4 微帶線的不連續效應 30
3-2-5 微帶線的損失 37
3-3 微帶線諧振器種類 38
3-3-1 λ/4短路微帶線共振器 39
3-3-2 λ/2開路微帶線共振器 40
3-4 共振器間的耦合形式 42
3-4-1 電場耦合: 42
3-4-2 磁場耦合: 46
3-4-3 混和耦合: 50
3-5 四分之一波長的阻抗轉換器與開路殘段(open stub) 53
3-6 步階阻抗諧振器 55
3-7 T型共振器 57
3-8 步階阻抗髮夾型帶通濾波器的設計 58
第四章 實驗程序與量測方法 62
4-1 微波介電材料的製備 62
4-1-1 粉末的製備與球磨 63
4-1-2 粉末的煆燒 63
4-1-3 粉末的混相調配 63
4-1-4 加入黏劑、過篩 64
4-1-5 壓模成型、去黏劑及燒結 64
4-2 微波介電材料的量測與分析 65
4-2-1 密度測量 65
4-2-2 X-Ray分析 65
4-2-3 SEM分析 66
4-2-4 介電特性量測與分析 66
4-2-5 共振頻率溫度飄移係數之量測 73
4-2-6 EPMA之分析 74
4-2-7離子極化率(αobs)分析 74
4-3 濾波器的製作與量測 75
第五章 實驗結果與討論 78
5-1 (Mg1-xZnx)4Ta2O9之微波介電特性 79
5-1-1 (Mg1-xZnx)4Ta2O9之XRD分析結果 79
5-1-2 (Mg1-xZnx)4Ta2O9之SEM分析結果 81
5-1-3 (Mg1-xZnx)4Ta2O9之密度分析結果 84
5-1-4 (Mg1-xZnx)4Ta2O9之K、Q×f分析結果 86
5-1-5 (Mg1-xZnx)4Ta2O9之離子極化率分析結果 88
5-1-6 (Mg1-xZnx)4Ta2O9之τf分析結果 90
5-2 (Mg0.95Zn0.05)4Ta2O9–x wt% B2O3之微波介電特性 93
5-2-1 (Mg0.95Zn0.05)4Ta2O9–x wt% B2O3之XRD分析結果 94
5-2-2 (Mg0.95Zn0.05)4Ta2O9–x wt% B2O3之SEM、EPMA分析結果 96
5-2-3 (Mg0.95Zn0.05)4Ta2O9–x wt% B2O3之密度分析結果 101
5-2-4 (Mg0.95Zn0.05)4Ta2O9–x wt% B2O3之K、Q×f分析結果 102
5-2-5 (Mg0.95Zn0.05)4Ta2O9–x wt% B2O3之τf分析結果 104
5-3 濾波器的模擬與實作 108
5-3-1 使用FR4(玻璃纖維基板)之模擬與實作結果 109
5-3-2 使用Al2O3之模擬與實作結果 111
5-3-3使用自製基板(MZT–0.5wt% B2O3)之模擬與實作結果 113
第六章 結論 117
參考文獻 118

[1]H. T. Ogawa, A. K. Kan, S. Ishihara, and Y. Higashida , “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss, J. Eur. Ceram. Soc., 23 2485–2488 (2003).
[2] A. K. Kan, H. T. Ogawa, A. Yokoi, and Y. Nakamura , “Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction, J. Eur. Ceram. Soc., 27 2977–2981 (2007).
[3] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), 陶瓷材料概論, 曉園出版社 (1988).
[4] R. D. Richtmyer, “Dielectric resonators, J. Appl. Phys., 10 391–398 (1939).
[5]S. B. Cohn, “Microwave bandpass filters containing high-Q dielectric resonators, IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
[6] D. M. Pozar, “Microwave engineering, Third Edition, John Wiley & Sons (2005).
[7]D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators, IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[8] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators, Microwave System News., 13 152–161 (1983).
[9] D. Kajfez and P. Guillon, Dielectric resonators, Artech House (1989).
[10] S. J. Penn, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc.,80 1885–1888 (1997).

[11] N. Kumada, K. Taki, and N. Kinomura, “Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9, Materials research bulletin, 35 (2000).
[12] T. Manabe, I. Yamaguchi. W. Kondo, S. Mizuta, and T. Kumagai, “Topotaxy of corundum-type tetramagnesium diniobate and ditantalate layers on rock-salt-type magnesium oxide substrates, J. Am. Ceram. Soc., 82 2061–2065 (1999).
[13] D. C. Sun1, S. Senz, and D. Hesse, “Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions, J. Eur. Ceram. Soc., 26 3181–3190 (2006).
[14] H. T. Ogawa and A. K. Kana, “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss, J. Eur. Ceram. Soc., 23 2485–2488 (2003).
[15] J. W. Cahn and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles, J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[16] W. J. Huppmann and G. Petzow, Sintering processes, Plenum Press (1979).
[17] R. M. German, Liquid phase sintering, Plenum Press (1985).
[18] J. H. Jean and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys, J. Mater. Sci., 24 [2] 500–504 (1989).
[19] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書 (2005).
[20] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits, McGraw-Hill (1990).
[21] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications, John Wiley & Sons (2001).
[22] G. Kompa, Practical microstrip design and applications, Artech House (2005).
[23] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社 (1998).
[24] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition, Artech House (1996).
[25] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/Microwave applications, John Wiley & Sons (2001).
[26] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in microstrip, IEEE Trans. Microwave Theory Tech., MTT-16 342–350 (1968).
[27] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures, Artech House (1980).
[28] E. J. Denlinger, “Losses of microstrip lines, IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[29] S. H. Cha, “Measurements of microwave conductivity and dielectric constant by the
cavity perturbation method and their errors, IEEE. Trans. MTT, MTT-33 519(1985).
[30] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators, IEEE Trans. Microwave Theory Tech., 28 [12] 1413–1417 (1980).
[31] Q. X. Chu and F. C. Chen, “A compact dual-band bandpass filter using meandering stepped impedance resonators, IEEE Microw. Wireless. Compon. Lett., 18 [4] 320–322 (2008).
[32] A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, “Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric, IEEE Trans. Microwave Theory Tech.,54 [3] 1253–1261 (2006).
[33] S. Amari, G. Tadeson, J. Cihlar, and U. Rosenberg, “New parallel λ/2-microstrip line filters with transmission zeroes at finite frequencies, IEEE MTT-S Int. Microwave Symp. Dig., PaperIFTU-27 543–546 (2003).
[34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave Insulators, IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators, IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of Low-Loss materials by the dielectric rod resonator method, IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[38] W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase evolution and microwave dielectric properties of (1–x)ZnAl2O4–xMg2TiO4 ceramics, J. Am. Ceram. Soc., 92 [1] 105–109 (2009).
[39] C. S. Hsu, C. L. Huang and K. H. Chiang, “Microwave dielectric properties of B2O3-doped LaAlO3 ceramics at low Sintering temperature, J. Mater. Sci., 38 [16] 3495–3500 (2003).
[40] K.X. Song, X.M. Chen and C.W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system, Ceram. Int., 34 917–920 (2008).
[41] C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution, J. Am. Ceram. Soc., 90 [5] 1483–1486 (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top