跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫智哲
研究生(外文):Chie-CheSun
論文名稱:風場動態簡化模型之建構及變速風機之控制策略
論文名稱(外文):Wind Farm Simplified Dynamic Model and Control Strategies for Variable Speed Wind Turbines
指導教授:張簡樂仁
指導教授(外文):Le-Ren Chang-Chien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:119
中文關鍵詞:控制策略簡化模型
外文關鍵詞:control strategysimplified dynamic model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著風力發電的蓬勃發展,大型風場的需求與日俱增,導致風力發電在電力系統中的佔比增加。由於風能的間歇性質,輸出功率不穩定的特性勢必會對系統有所衝擊,為了減少對系統的不確定影響,良好的策略對於風機控制是不可或缺的。本文提出兩種可使永磁式同步發電機具有平穩之實功輸出且兼具穩定運轉的控制策略;其一為轉速控制策略,利用轉動慣量儲能的特性,使平穩輸出功率上有優異的表現;其二為峰值功率控制策略,峰值功率控制可在減少風機的傳動機構損耗下使風機有穩定的功率輸出。
目前大型風場皆因風場模型結構複雜導致分析及模擬上的困難,本論文提出可應用於全風速資料之風機簡化模型,進而推導出風場之簡化模型。簡化模型包含:風渦輪機、永磁式同步發電機、轉子模型以及旋角控制系統。最後,經由與原風機及風場模型的模擬比較,證明簡化模型可有效地扮演風場動態輸出的能力。

With the highly development of wind generation system, the demand of large-scale wind farms is increasing dramatically. Due to the intermittent characteristic of wind energy, the fluctuation of output power may inevitably impact the power system. For reducing the uncertain challenges on the operation stability of power system, proper controls are indispensable. In this thesis, two proposed operating strategies are proposed to control power output of the PMSG type wind turbines. Rotor Speed Control (RSC) strategy has a good performance on keeping constant power output by using its rotating inertia as a energy buffer. Peak Power Control (PPC) strategy provides a smooth power output with less wear and tear on drive train.
Nowadays, wind farm behavior is difficult to study or analyze because of the complexity of wind turbine models. In this thesis, a reduced WTG model for variable wind speed is proposed. Based on the reduced WTG model, a reduced wind farm model, which is called lumped model, is further constructed. The lumped model still keeps essential components of wind turbine, PMSG, rotor inertia and pitch angle controller so that important features of wind turbine are still well retained. Finally, the lumped model is compared with the detailed model by several simulation tests. To validate the effectiveness of the lump model in portraying the dynamic output of wind farms.

摘要 I
Abstract III
Acknowledgements V
Contents VI
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Goals and Contributions 4
1.3 Thesis Organization 4
Chapter 2 Construction of Reduced-order Wind-generation Model with MPPT Algorithm 6
2.1 Introduction 6
2.2 Wind Turbine Model 7
2.3 Maximum Power Point Tracking Methodology 12
2.4 Reduced Generating Model 16
2.5 Reduced WTG Model 18
2.5.1 Pitch Angle Controller Disabled 18
2.5.2 Pitch Angle Controller Enabled 21
Chapter 3 Rotor Speed Control Strategy 24
3.1 Introduction 24
3.2 Rotor Speed Control Strategy Scheme 24
3.2.1 SPO Scheme 25
3.2.2 MPPT Mode 30
3.2.3 PAC mode 33
3.3 Performance of Single Wind Turbine in RSC Strategy 38
3.4 Influence of Rotor Inertia 41
3.5 Summary 45
Chapter 4 Peak Power Control Strategy 46
4.1 Introduction 46
4.2 Peak Power Control Scheme 47
4.2.1 MPPT mode 47
4.2.2 PAC mode 48
4.3 Performance of Single Wind Turbine in PPC Strategy 51
4.4 Wear and Tear Consideration 54
4.5 Summary 57
Chapter 5 Simulation Test of the Proposed Wind Turbine Control Strategies 58
5.1 CASE1 59
5.2 CASE2 62
5.3 Summary 64
Chapter 6 Equivalent Lumped Wind Generator Model for Wind Farm Analysis 65
6.1 Introduction 65
6.2 Construct Equivalent Wind Turbine Generator Model 67
6.2.1 Wind Turbine Equivalent Model 67
6.2.2 PMSG Equivalent Model and Swing Equation 70
6.2.3 Moment of Rotor Inertia in Lumped Wind Generation System 72
6.3 Pitch Angle in Lumped Model 74
6.3.1 Failure of Lumped Model Caused by Pitch Angle Controller 75
6.3.2 Apply PPC Strategy in Lumped Wind Generator Model 83
6.3.3 Apply RSC Strategy in Lumped Wind Generator Model 88
6.4 Relationship between Individual and Equivalent Rotor Speed 90
6.5 Summary 92
6.6 Simulation Test of Output Power Provided From Lumped Model 94
6.6.1 CASE1: Pitch Angle Controllers Are Disabled 95
6.6.2 CASE2: Apply PPC Strategy into Lumped Model 99
6.6.3 CASE3: Apply RSC Strategy into lumped Model 105
6.7 Executing Time of Simulation 111
Chapter 7 Conclusions and Future Works 112
7.1 Conclusions 112
7.2 Future works 113
Bibliography 114
Appendix 116
Vita 119


[1]The World Wind Energy Association, “Half-year Report 2011, 2011.
[2]A. Schwarzenegger, “Comparative costs of california central station electricity generation, Energy, no. January, 2010.
[3]Global Wind Energy Council, “Global Wind Report ‘Annual Market Update 2010’, 2010.
[4]K. Han and G.-zhu Chen, “A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform, in 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, vol. 3, pp. 2255-2259.
[5]J.-R. JHANG, “Controllable Wind Generation System Realized by Energy Storage Equipment, National Cheng Kung University.
[6]G. Riahy and P. Freere, “Dynamic controller to operate a wind turbine in stall region, in Proceeding of Solar’97, 1997, p. 152.
[7]C. Eisenhut, F. Krug, C. Schram, and B. Klckl, “Wind-Turbine Model for System Simulations Near Cut-In Wind Speed, IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 414-420, Jun. 2007.
[8]K. Tan and S. Islam, “Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors, IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 392-399, Jun. 2004.
[9]H. Saadat, Power System Analysis, 2nd ed. McGraw-Hill.
[10]Y.-ching Yin, “Strategies of Real Power Control for DFIG Wind Turbines and Wind Farms, National Cheng Kung University.
[11]L. Lin, J. Zhang, and Y. Yang, “Comparison of pitch angle control models of wind farm for power system analysis, in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-7.
[12]J. Zhang, M. Cheng, Z. Chen, and X. Fu, “Pitch angle control for variable speed wind turbines, in 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008, no. April, pp. 2691-2696.
[13]General Electric Company, “1.5MW Series WTG System Summaries, 2002.
[14]K. Tan, T. T. Yao, and S. Islam, “Effect of loss modeling on optimum operation of wind turbine energy conversion systems, in 2005 International Power Engineering Conference, 2005, no. 1, pp. 1-92.
[15]S. Chapman, Electric Machinery Fundamentals, 4th ed. McGraw-Hill.
[16]K.-chan Kim et al., “Analysis on the direct-driven high power permanent magnet generator for wind turbine, 2005 International Conference on Electrical Machines and Systems, pp. 243-247 Vol. 1, 2005.
[17]H. Sipeng, Z. Yangfei, L. Xianyun, and Y. Yue, “Equivalent wind speed model in wind farm dynamic analysis, in 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011, pp. 1751-1755.
[18]J. G. Slootweg and W. L. Kling, “Modeling of large wind farms in power system simulations, in IEEE Power Engineering Society Summer Meeting,, 2002, vol. 1, pp. 503-508.
[19]J. P. Hayes, Introduction to Digital Logic Design. Addison Wesley.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top