跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江信緯
研究生(外文):Hsin-WeiChiang
論文名稱:適用於非線性資料取樣系統之創新型高階反覆學習追蹤器
論文名稱(外文):A Novel High-Order Iterative Learning Tracker for Nonlinear Sampled-Data Systems
指導教授:蔡聖鴻
指導教授(外文):Sheng-Hong Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:43
中文關鍵詞:數位再設計高階反覆學習控制最佳線性化
外文關鍵詞:Digital redesignhigh-order iterative learning controloptimal linearization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對非線性資料取樣系統提出一個具有高效能追蹤的高階反覆學習追蹤器。藉由高階反覆學習控制機制和具有高增益特性的軌跡追蹤器做結合,此新的演算法則可以減少學習收斂代數和達成更有效的數位軌跡追蹤。針對非線性系統,首先,在每一代裡面,類比非線性系統所轉換的最佳線性化模型會被架構在每一個取樣時間上的操作點。然後,為了在這個最佳線性化模型裡設計一個類比追蹤器,具有高增益特性的線性二次式調節器技術會被應用在高階反覆學習控制器的初始輸入上。這個具有高增益特性的控制器能抑制系統的不確定性誤差,像是模型化的誤差、非線性擾動和外在的干擾。因此,系統的輸出能在很短的時間內快速又準確地追蹤到所設計的軌跡。值得注意的是反覆學習控制器的初始控制輸入會直接影響誤差收斂速度。為了實用的考量,類比線性二次式調節追蹤器會先被利用數位再設計的技術做轉換,然後發展一個新的微分型高階反覆學習控制演算法來應用在非線性資料取樣系統。最後,利用數個多輸入多輸出的例子來說明本論文所提出方法的效果和可行性。
In this thesis, a novel high-order iterative learning tracker is proposed to resolve the output tracking problem for the nonlinear sampled-data system. The newly developed high-order iterative learning control (ILC) method and the high-gain property tracker design methodology are combined to significantly reduce learning epochs and find the more efficiency digital tracker. For the nonlinear system, the optimal linear model of the analog nonlinear system will be constructed at every sampling time at each iteration by taking the operating state. Thereafter, the linear quadratic regulator (LQR) design technique, with a high-gain property, is applied as the initial control input of high-order ILC to design an analog tracker of the optimal linear model. The high-gain property controllers can suppress the uncertain errors such as modeling errors, nonlinear perturbations, and external disturbances. Thus, the system output can quickly and accurately track the desired reference in a short time interval. Notice that the convergence of ILC is directly influenced by the initial control input. For practical consideration, the introduced linear quadratic analogue tracker (LQAT) is implemented by adopting the prediction-based digital redesign technique to develop a novel D-type high-order ILC algorithm for nonlinear sampled-data systems. Finally, multi-input multi-output (MIMO) numerical examples are presented to illustrate the effectiveness and the feasibility of the proposed method.
Chapter 1 Introduction...1
Chapter 2 Optimal Linearization of Nonlinear Systems...4
Chapter 3 High-Order Iterative Learning Control...8
Chapter 4 The Prediction-Based Digital Redesign...12
4.1 Digital redesign of the linear quadratic analog tracker...13
4.2 A new high-order iterative learning control using digital redesign tracker...14
4.3 Convergence analysis...17
Chapter 5 Design Procedure...20
Chapter 6 Illustrative Examples...21
Chapter 7 Conclusion...40
References...41

[1] Arimoto, S., Kawamura, S., and Miyazaki, F., “Bettering operation of robots by learning, Journal of Robotic Systems, vol. 1, no. 2, pp. 123-140, 1984.
[2] Bien, Z., “Higher-order iterative learning control algorithm, Control Theory and Applications, IEE Proceedings D, vol. 136, no. 3, pp. 105-112, 1989.
[3] Chen, W. S., Li, R. H., and Li, J., “Observer-based adaptive iterative learning control for nonlinear systems with time-varying delays, International Journal of Automation and Computing, vol. 7, no. 4, pp. 438-446, 2010.
[4] Chen, F. M., Tsai, J. S. H., Guo, S. M., and Shieh, L. S., “New iterative learning control and high performance tracker for sampled-data systems, Journal of Machine Learning Research. (in review).
[5] Du, Y. Y., Tsai, J. S. H., Guo, S. M., Su, T. J., and Chen, C. W., “Observer-based iterative learning control with evolutionary programming algorithm for MIMO nonlinear systems, International Journal of Innovative Computing, Information and Control, vol. 7, no. 3, pp. 1357-1373, 2011.
[6] Fang, X., Chen, P., and Shao, J., “Optimal higher-order iterative learning control of discrete-time linear systems, Control Theory and Applications, IEE Proceedings D, vol. 152, no. 1, pp. 43-48, 2005.
[7] Gunnarsson, S. and Norrlof, M., “On the disturbance properties of high order iterative learning control algorithms, Automatica, vol. 42, no. 11, pp. 2031-2034, 2006
[8] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker : A prediction-based digital redesign approach, IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
[9] Kawamura, S., Miyazaki, F., and Arimoto, S., “Realization of robot motion based on a learning method, IEEE Transactions on System, Man and Cyberentic , vol.18, no. 1, pp. 126-134, 1988.
[10] Kim, T. A. and Sugie, T., “An iterative learning control based identification for a class of MIMO continue-time systems in the presence of fixed input disturbance and measurement noises, International Journal of Systems Science, vol. 38, no. 9, pp. 737-748, 2007.
[11] Kuo, B. C., Digital Control System. New York: Holt, Rinehart and Winston, 1980.
[12] Li, X. D., Chow, T. W. S., and Ho, J. K. L., “Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays, International Journal of Systems Science, vol. 39, no. 4, pp. 361-369, 2008.
[13] Liu, C., Xu, J., and Wu, J., “On iterative learning control with high-order internal models, International Journal of Adaptive Control and Signal Processing, vol. 24, no. 9, pp. 731-742, 2010.
[14] Meng, D., Jia, Y., Du, J., and Yu, F., “Initial shift problem for robust iterative learning control systems with polytopic-type uncertainty, Automatica, vol. 41, no. 7, pp. 825-838, 2010.
[15] Norrlof, M., “An adaptive iterative learning control algorithm with experiments on an industrial robot, IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 245-251, 2002.
[16] Ruan,X., Bien, Z., and Park, K. H., “Iterative learning controllers for discrete-time large-scale systems to track trajectories with distinct magnitudes, International Journal of Systems Science ,vol. 36, no. 4, pp. 221-233, 2005.
[17] Tayebi, A. and Xu, J. X., “Observer-based iterative learning control for a class of time-varying nonlinear systems, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50. no. 3, pp. 452-455, 2003.
[18] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints, IET Control Theory Applications, vol. 5, no. 3, pp. 447-464, 2011.
[19] Wu, S. C. and Tomizuka, M.,“An iterative learning control design for self-servowriting in hard disk drives, Mechatronics, vol. 20, no. 1, pp. 53-58, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 基於模型預測控制器的主動切換式追蹤器以適用於具有輸入飽和限制之被動切換系統
2. 適用於具有直接傳輸項之未知非線性隨機混合系統之修正型NARMAX主動容錯狀態空間自調式追蹤器
3. 適用於含隨機切換多重子系統並具輸入飽和限制之未知資料取樣系統的追蹤器
4. 以具有輸入飽和限制預測型卡曼濾波器錯誤偵測為基礎的混沌通訊加密系統
5. 具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統
6. 應用OpenGL於居家服務機器人之抗視角變換SIFT即時影像處理法之研究
7. 具對位式三相感應耦合結構之電動車用非接觸式充電槳系統
8. 應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究
9. 居家服務型機器人抓取姿態與模糊握力控制法之設計與實現
10. 以通用預測型卡曼濾波器錯誤偵測為基礎的通訊加密系統:進化規劃法
11. 串聯和動態輸出迴授控制器之多種採樣數位再設計
12. 適用於具有直接傳輸項之資料取樣系統的進化規劃法線性二次降階觀測器與追蹤器
13. 適用於未知資料取樣非線性且具有輸入─輸出傳輸項的正規系統之低階主動容錯狀態空間自調器
14. 限制型預測控制應用於固定翼無人飛機橫向飛行控制器之設計與實踐
15. 適用於內部未知連結大尺度資料取樣非線性系統之具有輸入限制反覆學習控制方法的有效追蹤器設計