跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭弘毅
研究生(外文):Hung-YiKuo
論文名稱:釔鋁石榴石結構螢光粉之光學性質及其應用於提升白光發光二極體之演色性
論文名稱(外文):The Optical Properties of YAG-based Phosphors and their Applications in the Enhancement of Color Rendering Index of White Light-Emitting Diodes
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:釔鋁石榴石螢光粉白色發光二極體演色性
外文關鍵詞:yttrium aluminum garnet phosphorwhite light-emitting diodescolor rendering index
相關次數:
  • 被引用被引用:1
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
釔鋁石榴石(YAG)螢光粉體向來為製作白光LED的主流材料,此類螢光粉具有高量子效率、成本低廉等優勢,大量被運用於各種白光LED商品中,但藍光LED搭配YAG:Ce黃色螢光粉之白光LED向來存在演色性過低之問題,主因為此類螢光粉缺乏紅色放光波段。
為了提升製作白光LED之演色性,本研究利用固態反應法合成出四種系列之YAG-based:Ce3+螢光粉體,實驗中利用共摻雜(Y2.95-zAl5O12:0.05Ce3+,zPr3+)產生紅色波段之螢光,以及改變主體結構使放射光譜產生紅位移以增加紅色波段,並進一步探討其放光機制。實驗中加入硼酸當作助熔劑降低煆燒溫度,於1500℃/2h還原氣氛下進行煆燒,當添加濃度為7wt%時可得YAG之純相,並增加外部量子效率達10%。
為了比較四種螢光粉體之實用性,利用色度座標、量子效率以及等效流明值進行評估,並著手於白色發光二極體之製作,實驗中發現,利用遠距式塗佈技術與螢光膠之最佳曲率半徑能夠分別提升照明效率達6%以及17.4%。最終,將合成出之YAG-based螢光粉應用於主波長為450nm藍色發光二極體中,其色溫控制於4214~4243K之間利於比較,以YAG螢光粉配合遠距式塗佈技術於350mA驅動下可得照明效率71.761 lm/W、色溫4227K、演色性63、色度座標(0.387, 0.4409)之白光發光二極體;以成分改質後之YAlSiON螢光粉取代YAG則可以將演色性提升至73.7。
Yttrium aluminum garnet (YAG) phosphor powders have always been the mainstream material for the fabrication of white light-emitting diodes (WLEDs). Such phosphors were applied to WLED because of their high quantum efficiency and low cost. However, a commercial yellow phosphor YAG:Ce3+-based WLED with a blue-LED chip has disadvantage of poor color rendering index (CRI) due to the lack of red components in its emission spectrum.
In this study, an attempt was made to improve the CRI value of YAG:Ce3+-based WLEDs by doping Gd3+、Pr3+ and Si4+ (N3-) ions into YAG:Ce3+ phosphors using the solid-state reaction. As Pr3+ ions were co-doped in the system, a red emission peak at 610-nm appeared in the emission spectrum under 450-nm excitation. Furthermore, Y2.95-mGdmAl5O12:0.05Ce3+ and Y2.95Al5-nSirO12-nNr:0.05Ce3+ phosphors produced red-shift in their emission spectra under 450-nm excitation because of the crystal field variation and the presence of Ce3+ ion around the Si-N bond, respectively. For the purpose of energy saving, 7 wt% boric acid flux was added to reduce the required calcined temperature. And the pure YAG phase could be obtained under 1500oC for 2 h. Compared with the sample without the addition of the flux, the external quantum efficiency (EQE) of the YAG:Ce3+ phosphor was increased up to 10% using 7 wt% boric acid as the flux.
In order to evaluate the feasibility of our synthesized phosphors for the application of phosphor-converted WLEDs (pc-WLEDs), the C.I.E. chromaticity coordinate, EQE, and lumen equivalent (LE) were taken into consideration. Moreover, pc-WLEDs were fabricated using phosphors synthesized herein with 450-nm blue chips. By utilizing the remote phosphor-converted technology and the optimum curvature of the phosphor gel, the luminous efficacy of conventional WLEDs could be improved by 6% and 17.4%, respectively. Noteworthily, the correlated color temperatures (CCTs) of all the WLEDs were fixed in the range of 4214-4243 K. The WLED with YAG:Ce3+ phosphors exhibited the luminous efficacy of 71.761 lm/W, CCT at 4227 K, CRI at 63, and chromaticity coordinates at (0.387, 0.4409) at 350-mA driving current. The CRI could be increased to 73.7 by using the composition-modified YAlSiON:Ce3+ instead of YAG:Ce3+.
目 錄
摘要 I
ABSTRACT II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 理論基礎與文獻回顧 4
2-1 螢光粉之介紹 4
2-1-1 螢光體發光原理與過程 6
2-1-2 螢光體性質 13
2-1-3 發光中心之種類與原理 14
2-1-4 濃度淬滅理論 16
2-2 螢光材料之組成與設計 16
2-2-1 主體晶格之選擇 16
2-2-2 活化劑之選擇 18
2-2-3 抑制劑之選擇 19
2-3 稀土元素 19
2-3-1 稀土元素之電子結構 19
2-3-2 稀土元素之光學躍遷 20
2-4 固態反應法 22
2-5 色彩學 23
2-5-1 色度座標 23
2-5-2 色溫與相對色溫 24
2-5-3 演色性 26
2-5-4 光通量 26
2-6 釔鋁石榴石結構(YAG-based)螢光粉簡介與文獻回顧 29
2-6-1 發展沿革 29
2-6-2 釔鋁石榴石結構介紹 29
2-6-3 YAG-based:Ce3+光譜特性 31
2-6-4 釔鋁石榴石結構(YAG-based)螢光粉近年文獻回顧 32
第三章 實驗步驟與儀器原理 35
3-1 實驗藥品及藍光LED特性 35
3-2 實驗步驟 36
3-2-1 YAG-based螢光粉體之合成 36
3-2-2 白光LED之製作 37
3-3 量測系統及特性分析 39
3-3-1量測儀器設備 39
3-3-2 特性分析 40
第四章 結果與討論 45
4-1 以固態法合成YAG-based螢光粉之特性分析 45
4-1-1 Y3Al5O12:Ce3+螢光粉之特性分析 46
4-1-2 Y2.95-zAl5O12:0.05Ce3+,zPr3+螢光粉之特性分析 53
4-1-3 Y2.95-mGdmAl5O12:0.05Ce3+螢光粉之特性分析 58
4-1-4 Y2.95Al5-nSinO12-nNn:0.05Ce3+螢光粉之特性分析 62
4-2 應用於白光LED之YAG-based螢光粉特性比較 67
4-2-1 PL光譜特性分析 67
4-2-2 熱穩定性分析 70
4-2-3 高溫高溼可靠度測試 71
4-3 白光LED之製作 72
4-3-1遠距式塗佈材料之高溫高溼可靠度測試 72
4-3-2螢光膠表面曲率對於出光效率的影響 73
4-3-3不同YAG-based螢光膠厚度對於白光LED之影響 75
4-3-4 YAG-based螢光粉應用於白光LED之特性比較 77
第五章 結論與未來展望 80
5-1 結論 80
5-2未來展望 82
參考文獻 83
附錄 92

表 目 錄
表 2-1 可見光對應之波長 6
表 2-2 不同環境之演色性需求 26
表 2-3 光度計單位及相對應之輻射單位 27
表 2-4 YAG:Ce黃色螢光粉於不同合成方法中其合成溫度及粒徑大小 29
表 2-5 釔鋁石榴石結構(YAG-based)螢光粉近年文獻回顧 32
表 3-1 化學藥品相關資訊 35
表 3-2 高功率(1W)藍光LED原始之光電特性 35
表 4-1 YAG-based螢光粉之光譜特性比較 68
表 4-2 不同螢光膠濃度(厚度)之白光LED特性 74
表 4-3 不同YAG-based螢光粉應用於白光LED之特性 78

圖 目 錄
圖 1-1 製作白光發光二極體的四種方法 2
圖 2-1 能量吸收與轉換 5
圖 2-2 螢光體中的能量傳遞圖 5
圖 2-3 電子能量釋放示意圖 7
圖 2-4 螢光體能量吸收與放射之組態座標圖 8
圖 2-5 Stokes shift示意圖 9
圖 2-6 不同偶合作用對發射峰寬度變化之影響 10
圖 2-7 非輻射能量轉移之三種原子能量座標圖 11
圖 2-8 固態發光材料中可能之躍遷現象,圖中實心圓點代表電子,空心原點為洞。實線表示放光過程,虛線則為非放光過程 13
圖2-9 螢光體主體之陽離子示意圖 17
圖2-10 螢光體主體之陰離子示意圖 18
圖2-11 活化劑之陽離子示意圖 18
圖2-12 抑制劑之陽離子示意圖 19
圖2-13 三價稀土離子之能階 21
圖2-14 色度座標圖 24
圖2-15 普朗克黑體輻射線於CIE1931色度座標 25
圖2-16 人眼敏感函數V (λ) 27
圖2-17 Y2O3-Al2O3 相圖 30
圖2-18 YAG晶體結構 30
圖2-19 YAG:Ce3+放光能階示意圖 31
圖3-1 YAG-based螢光粉體合成之實驗流程圖 36
圖3-2 YAG螢光粉之SEM圖 37
圖3-3 白光LED製作之實驗流程圖 38
圖3-4 製作白光LED之結構示意圖 38
圖3-5 激發光譜儀之實驗裝置圖 42
圖3-6 發射光譜儀之實驗裝置圖 43
圖3-7 原子能量組態座標圖 44
圖4-1 Y3-xAl5O12:xCe3+之放射光譜 47
圖4-2 Y3-xAl5O12:xCe3+之激發光譜 47
圖4-3 Y3Al5O12:Ce3+之能階圖 48
圖4-4 (a) Y3-xAl5O12:xCe3+之XRD圖(32.5o~35o) (b) Y3-xAl5O12:xCe3+之晶格常數 49
圖4-5 Y2.95Al5O12:0.05Ce3+於助熔劑添加(H3BO3)之放射光譜 50
圖4-6 Y2.95Al5O12:0.05Ce3+於助熔劑添加(H3BO3)之XRD圖 51
圖4-7 Y2.95Al5O12:0.05Ce3+於不同煆燒(calcine)溫度之放射光譜 52
圖4-8 Y2.95Al5O12:0.05Ce3+於不同煆燒(calcine)溫度之XRD圖 52
圖4-9 Y2.95-zAl5O12:0.05Ce3+,zPr3+之放射光譜 54
圖4-10 Y2.95-zAl5O12:0.05Ce3+,zPr3+之XRD圖 54
圖4-11 Y3Al5O12:Ce3+,Pr3+之能階圖 55
圖4-12 激發、放射光譜圖 (a) Y2.95Al5O12:0.05Ce3+ (b) Y2.99Al5O12:0.01Pr3+ 56
圖4-13 Y2.94Al5O12:0.05Ce3+,0.01Pr3+之激發光譜 57
圖4-14 Y2.95-mGdmAl5O12:0.05Ce3+之XRD圖 58
圖4-15 Y2.95-mGdmAl5O12:0.05Ce3+螢光粉之
(a)XRD(420)主峰位置及(420)平面距離 (b)晶格常數及晶格扭曲程度 59
圖4-16 Y2.95-mGdmAl5O12:0.05Ce3+之 (a)放射光譜 (b)積分強度 61
圖4-17 Y2.95-mGdmAl5O12:0.05Ce3+之能階圖 62
圖4-18 Y2.95Al5-nSinO12-nNn:0.05Ce3+之 (a)放射光譜 (b)積分強度 63
圖4-19 Y2.95Al5-nSinO12-nNn:0.05Ce3+之XRD圖 64
圖4-20 Y2.95Al5-nSirO12-nNr:0.05Ce3+之能階圖 64
圖4-21 Y2.95Al4.7Si0.3O11.7N0.3:0.05Ce3+於不同放射波長之
(a)激發光譜 (b)積分強度 66
圖4-22 YAG-based螢光粉之發射光譜 68
圖4-23 YAG-based螢光粉之C.I.E.色度座標圖 69
圖4-24 YAG-based螢光粉之熱穩定性分析 70
圖4-25 YAG-based螢光粉之可靠度測試 71
圖4-26遠距式塗佈材料之可靠度測試 73
圖4-27螢光膠表面曲率對於出光效率的影響 74
圖4-28 不同厚度螢光膠塗佈於藍光LED之C.I.E.色度座標圖
(a)YAG (b)YPrAG (c)YGdAG (d)YAlSiON 75
圖4-29 YAG-based螢光粉應用於白光LED之EL光譜圖 78
圖4-30 YAG-based螢光粉應用於白光LED之C.I.E.色度座標圖 79
[1] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes, Applied Physics A: Materials Science & Processing, 64, 417-18 (1997).
[2] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor, Optics Letters, 29, 2001-03 (2004).
[3] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors, IEEE Photonics Technology Letters, 17, 1160-62 (2005).
[4] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. J. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency, Journal of Physics D: Applied Physics, 44, 075402, 6pp (2011).
[5] Y.Shimizu, K.Sakano, Y.Noguchi, and T.Moriguchi, “Light emitting device having a nitride compound semiconducor and a phosphor containing a garnet fluorescent material, United States Patent:5998925 (1997).
[6] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華科技 (2006).
[7] 楊俊英,電子產業用螢光材料之調查,工研院,7 (1992).
[8] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode, Applied Physics Letters, 92, 143309, 3pp (2008).
[9] Y. Shuai, Y.Z. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures, IEEE Photonics Technology Letters, 23, 137-139 (2011).
[10] R. Y. Yu, S. Z. Jin, S. Y. Cen, and P. Liang, “Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes, IEEE Photonics Technology Letters, 22, 1765-1767 (2010).
[11] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters, IEEE Photonics Technology Letters, 23, 552-554 (2011).
[12] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package, Journal of The Electrochemical Society, 159, J96-J106 (2012).
[13] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging, Applied Optics, 49, 247-257 (2010).
[14] J. P. You, Y.-H. Lin, N. T. Tran, and F. G. Shi, “Phosphor Concentration Effects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes, Journal of Electronic Packaging, 132, 031010-031012 (2010).
[15] N. T. Tran and F. G. Shi, “Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes, Journal of Lightwave Technology, 26, 3556-3559 (2008).
[16] Z.-Y. Liu, S. Liu, K. Wang, and X.-B. Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation, IEEE Transactions on Components and Packaging Techologies, 33, 680-687 (2010).
[17] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources, Journal of Lightwave Technology, 28, 3226-3232 (2010).
[18] C.-C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang, H.-L. Hu, and W.-H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes, IEEE Transactions on Device and Materials Reliability, 9, 367-370 (2009).
[19] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED, Journal of Lightwave Technology, 27, 5145-5149 (2009).
[20] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources, IEEE Journal of Selected Topics in Quantum Electronics, 15, 1181-1188 (2009).
[21] S. C. Huang, J. K. Wu, and W.-J. Hsu, “Particle Size Effect on the Packaging Performance of YAG:Ce Phosphors in White LEDs, International of Journal Applied Ceramic Technology, 6, 465–469 (2009).
[22] T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, “Superior Illuminant Characteristics of Color Rendering and Luminous Efficacy in Multilayered Phosphor Conversion White Light Sources Excited by Near-Ultraviolet Light-Emitting Diodes, Japanese Journal of Applied Physics, 48, 112101, 6pp (2009).
[23] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers, Japanese Journal of Applied Physics, 49, 100203, 3pp (2010).
[24] Y.-H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property, Optics Letters, 34, 1-3 (2009).
[25] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration, Optics Express, 18, 5055-5060 (2010).
[26] 劉如熹、許育賓、徐大正、丁逸聖、林群哲、解榮軍、廣琦尚登、黃振東、陳海英、肖國瑋、蘇宏元,白光發光二極體製作 技術-由晶粒金屬化至封裝,全華圖書 (2008).
[27] 蘇勉曾、吳世康,發光材料,全華科技,第四卷,1-39 (2004).
[28] 林麗玉,奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究, 國立交通大學應用化學研究所碩士論文 (2000).
[29] A. H. Kitai, “Visible luminescence-Solid state materials &applications, Chapman&Hall:London (1992).
[30] R. A. Swalin, “Thermodynamics of Solids, John Wiley & Sons, 335 (1972).
[31] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, and L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Althin films, Materials Science and Engineering: B, 52, 59-62 (1998).
[32] R. C. Ropp, “Luminescence and solid state., Elsevier Science Publishers, B. V. The Netherlands (1991).
[33] G. Blasse, and B. Grabmaier, “Luminescent materials, Springer-Verlag, Berlin (1994).
[34] 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技 (2005).
[35] S. H. M. Z. Pan, A. Loper, V. King, B. H. Long and W. E. Collins, Applied Physics Letters, 77, 4688-92 (1995).
[36] 曹正樸,基本材料科學,台灣商務印書館股份有限公司,台北,民64。
[37] E. F. Schubert, “LIGHT-EMITTING DIODES. New York: Cambridge University (2006).
[38] 林蘇逸,高演色性白光發光二極體之研究,國立臺灣大學電機資訊學院光電工程學研究所碩士論文 (2007).
[39] I. Ashdown, “Radiosity: A Programmer's Perspective John Wiley & Sons, 14-27 (2002).
[40] S. Geller and M. A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets, Acta crystallogr, 10, 239 (1957).
[41] J. E. Geusic and L. G. V. Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets, Applied Physics Letters, 4, 182 (1964).
[42] R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited bsorption loss for Ce in YAG and implications for tunable 5d-4f earth lasers, Applied Physics Letters, 33, 410-412 (1978).
[43] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Materials Science and Engineering R, 71, 1–34 (2010).
[44] M. Medraj, R. Hammond, M. A. Parvez , R. A. L. Drew, and W. T. Thompson, “High temperature neutron diffraction study of the Al2O3–Y2O3 system, Journal of the European Ceramic Society, 26, 3515–3524 (2006).
[45] S. Geller, “Crystal chemistry of the garnets, Z. Kristallogr, 125, 1 (1967).
[46]余昭蓉,摻加稀土元素鋁酸釔螢光體之合成與特性鑑定,交通大學應用化學研究所碩士論文 (1997).
[47] R. C. Ropp, “The Chemistry of Artificial Lighting Devices, Elsevier, New York(1993).
[48] Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods, Journal of Physics and Chemistry of Solids, 65, 845–850 (2004).
[49] M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors, Moldavian Journal of the Physical Sciences, 4, 347-356 (2005).
[50] A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting, Chemistry of Materials, 18, 3314-3322 (2006).
[51] C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, “Preparation of Cerium-Activated GAG Phosphor Powders Influence of Co-doping on Crystallinity and Luminescent Properties, Journal of The Electrochemical Society, 154, J326-J329 (2007).
[52] C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, “Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects, Journal of The Electrochemical Society, 155, B517-B520 (2008).
[53] A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+–N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors, Chemistry of Materials, 20, 6277-6283 (2008).
[54] A. Katelnikovas , H. Bettentrup , D. Uhlich , S. Sakirzanovas , T.J¨ ustel, and A.Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors, Journal of Luminescence, 129, 1356–1361 (2009).
[55] A. Katelnikovas, T. Bareika, P. Vitta, T. Justel, H. Winkler, A. Kareiva, A. Zukauskas, and G. Tamulaitis, “Y3-xMg2AlSi2O12:Ce3+x phosphors – prospective for warm-white light emitting diodes, Optical Materials, 32, 1261–1265 (2010).
[56] A. Katelnikovas, H. Winkler, A. Kareiva, T. Justel, “Synthesis and optical properties of green to orange tunable garnet phosphors for pcLEDs, Optical Materials, 33, 992–995 (2011).
[57] M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, “Luminescence Characteristics of Y3Al5−2y(Mg,Si)yO12:Ce Phosphor Prepared by Spray Pyrolysis, Journal of The Electrochemical Society, 157, H1135-H1139 (2010).
[58] M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, “Luminescence Comparison and Enhancement of Ce-doped Yttrium Aluminum Garnet Phosphor via Cation Substitutionand Adding Flux, Journal of The Electrochemical Society, 158, H697-H703 (2011).
[59] Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application, Journal of Alloys and Compounds 498, 199–202 (2010).
[60] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X.-J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs, Optics Express, 18, 25177-25182 (2010).
[61] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, L. G. Zhang, R. X. Zhong, and J. H. Zhanga, “Interionic Energy Transfer in Y3Al5O12:Ce3+, Pr3+, Cr3+ Phosphor, Journal of The Electrochemical Society, 159, F68-F72 (2012).
[62] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X.-J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor, Journal of Applied Physics, 108, 093515, 10pp (2010).
[63] Z. Q. Jiang, Y. H. Wang, and L. S. Wang, “Enhanced Yellow-to-Orange Emission of Si-Doped Mg3Y2Ge3O12:Ce3+ Garnet Phosphors for Warm White Light-Emitting Diodes, Journal of The Electrochemical Society, 157, J155-J158 (2010).
[64] M. S. Kishore, N. P. Kumar, R. G. Chandran, and A. A. Setlurb, “Solid Solution Formation and Ce3+ Luminescence in Silicate Garnets, Electrochemical and Solid-State Letters, 13, J77-J80 (2010).
[65] H. C. Jung, J. Y. Park, G. S. R. Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of Red Emission in Aluminum Garnet Yellow Phosphors by Sb3+ Substitution for the Octahedral Site, Journal of The American Ceramic Society, 94, 551–555 (2011).
[66] Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang and J. H. Zhang, “Generation of broadband emission by incorporating N3- into Ca3Sc2Si3O12:Ce3+ garnet for high rendering white LEDs, Journal of Materials Chemistry, 21, 6354-6358 (2011).
[67] M. Sopicka-Lizer, D. Michalik, J. Plewa, T. Juestel, H. Winkler, and T.Pawlik, “The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor, Journal of The European Ceramic Society, 32, 1383–1387 (2012).
[68] X. J. Wang, G. H. Zhoub, H. L. Zhangb, H. L. Li, Z. J. Zhanga, and Z. Sun, “Luminescent properties of yellowish orange Y3Al5−xSixO12−xNx:Ce phosphors and their applications in warm white light-emitting diodes, Journal of Alloys and Compounds, 519, 149–155 (2012).
[69] Y.-H. Song, T.-Y. Choi, Karuppanan Senthil, Takaki Masaki, and Dae-Ho Yoon, “Enhancement of photoluminescence properties of green to yellow emitting Y3Al5O12:Ce3+ phosphor by AlN addition for white LED applications, Materials Letters, 67, 184–186 (2012).
[70] C. Zhaoa, D. H. Zhua, M. X. Maa, T. Hana, and M. J. Tua, “Brownish red emitting YAG:Ce3+,Cu+ phosphors for enhancing the color rendering index of white LEDs, Journal of Alloys and Compounds, 523, 151– 154 (2012).
[71] P. Wang, D.-J. Wang, J. Song, Z.-Y. Mao, and Q.-F. Lu, “Incorporation of Si–O induced valence state variation of cerium ion and phase evolution in YAG:Ce phosphors for white light emitting diodes, Journal of Materials Science: Materials in Electronics, 23, 6pp (2012).
[72] Y.-T. Nien, T.-H. Lu, V. R. Bandi, and I.-G. Chen, “Microstructure and Photoluminescence Characterizations of Y3Al5O12:Ce Phosphor Ceramics Sintered with Silica, Journal of The American Ceramic Society, 95, 1378–1382 (2012).
[73] Y.S. Lin, and R.S. Liu, Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination, Journal of Luminescence, 122, 580–582 (2007).
[74] S. Q. Xu, L. Z. Sun, Y. Zhang, H. D. Ju, S. L. Zhao, D. G. Deng, H. P.Wang, B. L.Wang, “Effect of fluxes on structure and luminescence properties of Y3Al5O12:Ce3+ phosphors, Journal of Rare Earths, 27, 327-329 (2009).
[75] K. Sigrist, “DSC and X-ray measurements as methods to detect lattice distortions, Thermochimica Acta, 311, 213-216 (1998).
[76] C. M. Tan, B. K. Eric Chen, G. Xu, and Y. J. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs, Microelectronics Reliability, 49, 1226–1230 (2009).
[77] 方盈倩,開發照明用螢光體與螢光材料分析,成功大學電機工程學系博士論文 (2011).
[78] D. Y. Kang, E. Wu, and D. M. Wang, “Modeling white light-emitting diodes with phosphor layers, Applied Physics Letters, 89, 231102, 3pp (2006).
[79] A. C. P. Rocha, L. H. C. Andrade, S. M. Lima, A. M. Farias, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Tunable color temperature of Ce3+/Eu2+, 3+ co-doped low silica aluminosilicate glasses for white lighting, Optics Express, 20, 10034-10041 (2012).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top