跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王禎佑
研究生(外文):Chen-YuWang
論文名稱:漣波控制切換式升壓調節器之研究與設計
論文名稱(外文):Study and Design of Switching Boost Regulators with Ripple-Based Control
指導教授:蔡建泓蔡建泓引用關係
指導教授(外文):Chien-Hung Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:146
中文關鍵詞:切換式升壓轉換器漣波控制不導通時間控制導通時間控制遲滯控制
外文關鍵詞:Switching DC/DC Boost ConverterRipple-Based ControlAdaptive Off-Time ControlAdaptive On-Time ControlHysteretic Control
相關次數:
  • 被引用被引用:8
  • 點閱點閱:1014
  • 評分評分:
  • 下載下載:235
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對切換式升壓轉換器進行漣波控制技術的探討並進行實作,更提出一個可達到低成本的漣波控制技術「斜波仿真迴授」。論文內容包括升壓轉換器的原理、漣波控制於升壓轉換器的適應程度與利用實作驗證的兩個例子。
第一個例子是針對目前已出現的控制架構「結合V2與適應性不導通/導通時間控制升壓轉換器」進行探討。並對其電感電流偵測電路進行改善以獲得轉換效率的進一步提升。此系統在適應性不導通與導通時間控制下,可以操作於較廣負載的範圍。在CCM時,適應性不導通時間讓系統可以維持較穩定的切換頻率操作。而在DCM時,PFM的特性讓輕載效率可以獲得提升。另外,V2的迴路也讓系統可以保有較好的輸出調節律兼顧暫態響應的能力。本系統是採用TSMC 0.25μm HV-CMOS製程透過國家晶片中心進行晶片實作。結果顯示,系統在輸入電壓4.5-5-5V與0-300mA的負載範圍均可提供穩定的輸出電壓12V,並且維持堪用的轉換效率,而最高轉換效率可以達到93.8%。在此系統在CCM操作時,可維持950kHz的準定頻特性,而在DCM也可以展現PFM的特性。當系統進行100-300mA的負載變化,最短的回復時間可以達到26μs。另外,於5-300mA的負載變換也可以達到28μs。
本論文在第二個例子中共實現了兩個控制系統。第一個系統為「遲滯電壓控制升壓轉換器使用斜坡仿真迴授技術」,不僅讓原本無法應用於升壓轉換器的遲滯電壓控制得以實現,也讓系統可達到不須補償的低成本的特性。另外,第二個系統「V2遲滯電壓控制升壓轉換器使用斜坡仿真迴授技術」也加入V2迴授的技巧,進一步證明此技術與其他漣波控制技術的結合性。模擬結果顯示,遲滯電壓控制的系統不須要補償元件,在輸入電壓4.5-5.5V與負載電流100-300mA的範圍中,都可讓輸出電壓提升至11.8V並具有一個好的輸出漣波表現。而在使用V2的控制系統在相同的條件下,讓負載調節率可以由250mV/A提升至23.5mV/A,而輸入調節率也從290mV/V提升至20.7mV/V。系統於100-300mA的負載電流變化,也可以達到29μs的回復時間。

This thesis focuses on the study and design of the topic “ripple-based control switching boost converters”. In addition, a ripple-based control technique named “Emulated-Ramp Feedback, ERF” would be newly proposed. The contents of this study includes the fundamental of switching DC/DC boost converter, the analysis of ripple-based control converters and two case design of chip implementation.
First, an inductor switching DC/DC boost regulators with adaptive off/on time (AOOT) control is presented. This system works with the adaptive-off-time control in CCM while the adaptive-on-time control in DCM. The burden caused by the switching frequency variation is reduced due to the quasi-fixed frequency switching by adaptive-off-time modulation under heavy-load. In DCM, adaptive-on-time takes over the operation and improves the power efficiency under light-load condition. In another way, an on-chip sense-FET current sensor is used to decrease the conduction loss caused by the conventional sensing resistor on power stage. The AOOT control boost regulator was implemented with a 0.25 μm high voltage (HV) CMOS process. For conversion specification of 5 V to 12V with a 0-300mA load range, peak efficiency of 93.2% is achieved. Measurement results show that the switching frequency keeps constant at 950 kHz in CCM.
Another case consists of two control system. First system named “Hysteretic Voltage Control Switching Boost Converter with Enulated-Ramp Feedback” achieves the hysteretic voltage control in boost converter and can get the low cost characteristic without any compensator. Besides, the second system named “V2 Hysteretic Voltage Control Switching Boost Converter with Enulated-Ramp Feedback” proves the compatibility of ERF technique in ripple-based control boost converters. The regulator was implemented with a 0.25 μm high voltage (HV) CMOS process. Simulation results show the system which uses hysteretic voltage control can work in conversion specification of 5 V to 12V with a 100-300mA load range. And peak efficiency of 93.7% is achieved. Another system improves the load regulation from 250mV/A to 23.5mV/A, and the line regulation from 290mV/V to 20.7mV/V with V2 feedback. Measurement results show that the switching frequency keeps constant at 950 kHz in CCM. The ability of transient response is promoted, for 28μs recovey time with a 100-300mA load current step.

摘要 iii
Abstract v
誌 謝 vii
目 錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 相關研究與發展 4
1.3 目標與貢獻 6
1.4 論文架構簡介 7
第二章 脈波寬度調變控制切換式升壓轉換器 8
2.1 功率級穩態分析 9
2.1.1 連續導通模式 9
2.1.2 不連續導通模式 16
2.1.3 功率級元件設計考量 19
2.2 開迴路系統分析 20
2.2.1 系統小訊號模型 21
2.2.2 右半平面零點的影響 22
2.3 常見之PWM控制介紹 24
2.3.1 電壓模式控制 24
2.3.2 峰值電流模式控制 26
2.3.3 特性比較 30
第三章 切換式穩壓器之漣波控制技術 31
3.1 漣波控制基本原理與分類 31
3.1.1 遲滯控制 32
3.1.2 固定導通/固定不導通時間控制 36
3.1.3 固定頻率單緣觸發漣波調節器 41
3.1.4 特性比較 42
3.2 漣波控制衍生問題與改善對策 44
3.2.1 較差的輸出調節率 44
3.2.2 低ESR的應用瓶頸 45
3.2.3 不固定的切換頻率 51
3.3 漣波控制於升壓型轉換器的實現 54
3.3.1 實現上遭遇的困難 54
3.3.2 控制架構的應變 55
3.3.3 特性比較 59
3.4 漣波控制升壓型轉換器之研究現況與討論 60
3.4.1 遲滯控制之近年相關研究 61
3.4.2 固定導通時間/固定不導通時間控制之近年相關研究 64
3.4.3 漣波控制升壓轉換器近年研究討論 66
第四章 結合適應性不導通/導通時間與V2控制之高效率切換式升壓器 68
4.1 系統目標與介紹 68
4.2 系統架構與規格 70
4.3 系統運作原理與分析 71
4.3.1 適應性不導通時間/適應性導通時間控制 71
4.3.2 V2迴路 75
4.4 電路設計 76
4.4.1 適應性時間控制器 76
4.4.2 電感電流偵測電路 78
4.4.3 誤差校正路徑的設計 82
4.4.4 軌對軌輸入的遲滯比較器 86
4.4.5 電壓/電流轉換器 88
4.4.6 帶差參考電路 89
4.4.7 緩啟動電路 93
4.4.8 功率電晶體與閘級驅動電路 94
4.5 模擬結果 95
4.5.1 緩啟動的功能 96
4.5.2 穩態操作 97
4.5.3 暫態響應 99
4.5.4 效率與切換頻率的固定 100
4.6 晶片佈局與量測規劃 103
4.6.1 晶片佈局 103
4.6.2 晶片量測考量與規劃 105
4.7 量測結果 109
第五章 遲滯電壓控制升壓轉換器使用斜波仿真式迴授技術 112
5.1 實現目標 112
5.2 斜波仿真式迴授技術的基本原理 113
5.3 系統架構與規格 117
5.4 系統原理分析與設計 119
5.4.1 遲滯電壓控制升壓轉換器使用斜波仿真迴授技術 119
5.4.2 非理想效應所造成的影響 120
5.4.3 V2遲滯電壓控制升壓轉換器使用斜波仿真技術 125
5.5 電路設計 126
5.5.1 仿真斜波產生器 127
5.5.2 遲滯比較器 128
5.6 模擬結果 128
5.6.1 穩態操作 129
5.6.2 暫態響應 131
5.6.3 效率 132
5.6.4 結果與討論 133
5.7 晶片佈局與量測規劃 135
5.8 晶片量測結果 138
第六章 結論 141
6.1 總結與貢獻 141
6.2 未來工作與研究方向 142
參考文獻 144
[1]Power Management Units for Embedded Processors, Selection & Solution Guides, Texas Instruments, 2011.
[2]A. Carroll and G. Heiser, An Analysis of Power Consumption in a Smartphone, presented at the USENIX Annual Technical Conference, 2010.
[3]T. Datasheet, Single Chip Power Solution for Battery Powered Systems, Rev. E ed, 2012.
[4]Y.-F. Chen, C.-C. Chen, and K.-H. Chen, Mixed Color Sequential Technique for Reducing Color Breakup and Motion Blur Effects, Journal of Display Technology, vol. 3, pp. 377-385, 2007.
[5]M. Day, TLC5940 PWM Dimming Provides Superior Color Quality Video Displays, Application Notes, Texas Instruments, 2006.
[6]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer Academic, 2001.
[7]R. Redl and S. Jian, Ripple-Based Control of Switching Regulators-An Overview, IEEE Transactions on Power Electronics vol. 24, pp. 2669-2680, 2009.
[8]N. Keskar and G. A. Rincon-Mora, Self-Stabilizing, Integrated, Hysteretic Boost DC-DC Converter, in IEEE Industrial Electronics Society Conference 2004, pp. 586-591.
[9]A. Hasan, S. Gregori, I. Ahmed, and R. Chik, Monolithic DC-DC Boost Converter with Current-Mode Hysteretic Control, in 24th Canadian Conference on Electrical and Computer Engineering 2011, pp. 001242-001245.
[10]J.-C. Tsai, C.-L. Chen, Y.-H. Lee, H.-Y. Yang, M.-S. Hsu, and K.-H. Chen, Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 1967-1979, Oct. 2011.
[11]L. Ming Chak, J. Xiaocheng, and P. K. T. Mok, A 14V-Output Adaptive Off-Time Boost Converter with Quasi-Fixed-Frequency in Full Loading Range, in IEEE International Symposium on Circuits and Systems 2011, pp. 233-236.
[12]X. XU, M. ZHAO, and X. Wu, On-Chip Boost Regulator with Projected Off- and On-Time Control, Journal of Zhejiang University, vol. 10(8), pp. 1223-1230, 2009.
[13]H.-H. Huang, C.-L. Chen, D.-R. Wu, and K.-H. Chen, Solid-Duty-Control Technique for Alleviating the Right-Half-Plane Zero Effect in Continuous Conduction Mode Boost Converters, IEEE Transactions on Power Electronics vol. 27, pp. 354-361, Jun. 2012.
[14]Understanding Boost Power Stages in Switchmode Power Supplies, Application Notes, Texas Instruments, 1999.
[15]M. K. Kazimierczuk, Pulse-width Modulated DC-DC Power Converters. USA: Widley, 2008.
[16]C. Basso. (2009). Understanding the Right-Half-Plane Zero. Available: http://powerelectronics.com/power_management/power_understanding_righthalfplane_zero_0509/
[17]Voltage Mode Boost Converter Small Signal Control Loop Analysis Using the TPS61030, Application Notes, Texas Instruments, 2009.
[18]F. Su, W.-H. Ki, and C.-Y. Tsui, Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications, IEEE Journal of Solid-State Circuits, vol. 43, pp. 815-822, Apr. 2008.
[19]L. K. Wong and T. K. Man, Steady State Analysis of Hysteretic Control Buck Converters, in 13th Power Electronics and Motion Control Conference, 2008, pp. 400-404.
[20]C. Song, Optimizing Accuracy of Hysteretic Control, Power Electronic Technology, Application Notes, 2006.
[21]C.-L. Chen, W.-J. Lai, T. H. Liu, and K.-H. Chen, Zero current detection technique for fast transient response in buck DC-DC converters, in IEEE International Symposium on Circuits and Systems, 2008, pp. 2214-2217.
[22]J. Wang, J. Xu, and B. Bao, Analysis of Pulse Bursting Phenomenon in Constant-On-Time-Controlled Buck Converter, IEEE Transactions on Industrial Electronics, vol. 58, pp. 5406-5410, Dec. 2011.
[23]P. Y. Wu and P. K. T. Mok, A Monolithic Buck Converter With Near-Optimum Reference Tracking Response Using Adaptive-Output-Feedback, IEEE Journal ofSolid-State Circuits, vol. 42, pp. 2441-2450, Nov. 2007.
[24]Y. Y. Mai and P. K. T. Mok, A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 748-752, Aug. 2008.
[25]Y.-H. Lee, S.-J. Wang, and K.-H. Chen, Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor, IEEE Transactions on Power Electronics, vol. 25, pp. 829-838,Apr. 2010.
[26]左仲先, 應用於切換式直流至直流轉換器之高性能互補金氧半控制器: 國立交通大學博士論文, 2004.
[27]R. Redl and G. Reizik, Switched-Noise Filter for the Buck Converter Using the Output Ripple as the PWM Ramp, in 20th IEEE Applied Power Electronics Conference and Exposition, 2005, pp. 918-924 Vol. 2.
[28]T. Tateishi and Aichi, Parallel RC Current Dectection Circuit and DC/DC Converter with A Parallel RC Current Detection Circuit, U.S. Patnet 6,469,481, Oct. 22, 2002.
[29]F. Su and W.-H. Ki, Digitally Assisted Quasi-V2 Hysteretic Buck Converter with Fixed Frequency and without Using Large-ESR Capacitor, in IEEE International Solid-State Circuits Conference, 2009, pp. 446-447,447a.
[30]T. Nabeshima, T. Sato, S. Yoshida, S. Chiba, and K. Onda, Analysis and Design Considerations of a Buck Converter with a Hysteretic PWM Controller, in 35th IEEE Power Electronics Specialists Conference, 2004, pp. 1711-1716 Vol.2.
[31]J.-J. Chen, An Active Current-Sensing Constant-Frequency HCC Buck Converter Using Phase-Frequency-Locked Techniques, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control vol. 55, pp. 761-769, 2008.
[32]C.-H. Tso and J.-C. Wu, A Ripple Control Buck Regulator with Fixed Output Frequency, IEEE Power Electronics Letters, vol. 1, pp. 61-63, Sep. 2003.
[33]W.-H. Ki, K.-M. Lai, and C. Zhan, Charge Balance Analysis and State Transition Analysis of Hysteretic Voltage Mode Switching Converters, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, pp. 1142-1153, May. 2011.
[34]W.-R. Liou, P.-H. Chen, and J.-C. Tzeng, A Synchronous Boost Regulator with PWM/PFM Mode Operation, in IEEE International Conference on ASIC, 2009, pp. 1066-1069.
[35]C. Y. Leung, P. K. T. Mok, and K. N. Leung, A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technologies, IEEE Journal of Solid-State Circuits, vol. 40, pp. 2265-2274, Nov. 2005.
[36]K. Jung, J. Lim, J. Park, H. Yang, S. Cha, and J. Choi, A High Efficiency CMOS DC-DC Boost Converter with Current Sensing Feedback, in 48th Midwest Symposium on Circuits and Systems, 2005, pp. 1661-1664 Vol. 2.
[37]R. C. H. Chang, H.-M. Chen, C.-H. Chia, and P.-S. Lei, An Exact Current-Mode PFM Boost Converter With Dynamic Stored Energy Technique, IEEE Transactions on Power Electronics, vol. 24, pp. 1129-1134,Apr. 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊