[1]H. M. O’bryan, J. Thomson, and J. K. Plourde, “A new BaO–TiO2 compound with temperature- stable high permittivity and low microwave loss, J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2] G. Wolfram and H. E. Göbel, “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z = 2), Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values, Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
[4] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled temperature coefficient of resonant frequency of Al2O3–TiO2 ceramics by annealing treatment, Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
[5] C. L. Huang, T. J. Yang, and C. C. Huang, “Low dielectric loss ceramics in the ZnAl2O4–TiO2 system as aτf compensator, J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[7] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[8] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators, Microwave SysTFm News., 13, 152–161 (1983).
[9] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators, IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[10] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[11] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).[12] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論, 曉出版社, (1988).
[13] H. J. Lee, I. T. Kim, and K. S. Hong, ‘‘Dielectric properties of AB2O6 compounds at microwave frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb,Ta),’’ Jpn. J. Appl. Phys., 36 [10A] L1318–20 (1997).
[14] Y. C. Zhang, Z. X. Yue, Z. L. Gui, L. T. Li, and C. M. Cheng , “Microwave dielectric properties of (Zn1-xMgx)Nb2O6 ceramics, Mater. Lett., 57 4531–4534 (2003).
[15] C. L. Huang, J. Y. Chen, Y. W. Tseng, C. Y. Jiang, and G. S. Huang, “High dielectric constant and low-loss microwave dielectric ceramics using (Zn0.95M0.05)Ta2O6 (M = Mn,Mg, and Ni) solid solutions, J. Am. Ceram. Soc., 93 [10] 3299–3304 (2010).
[16] C. L. Huang, J. Y. Chen, “Microwave dielectric characteristics of (Mg0.95M0.05)Ta2O6 (M = Ni, Zn, Mn) ceramic series, Mater. Lett., 76 28–31 (2012).
[17] Y. C. Zhang, Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, “Microwave dielectric properties of Zn(Nb1-xTax)2O6 ceramics, Mater. Lett., 58 1392–1395 (2004).
[18] W. C. Tzou , Y. C. Chen , C. F. Yang , C. M. Cheng , “Microwave dielectric characteristics of Mg(Ta1-xNbx)2O6 ceramics, Mater. Res. Bull., 41 1357–1363 (2006).
[19] G. R. Lumpkin, K. L. Smith, and M. G. Blackford, “Heavy ion irrasiation studies of columcite, brannerite, and pyrochlore structure types, J. Nucl. Mater., 289 177–187 (2001).
[20] C. Tealdi, M. S. Islam, L. Malavasi, and G. Flor, “Defect and dopant properties of MgTa2O6, J. Solid State Chem., 177 4359–4367 (2004).
[21] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI design techniques for analog and digital circuits, McGraw-Hill, (1990).
[22] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in microstrip, 16 [6] 342–350 (1968).
[23] J. S. Hong, M. J. Lancaster, “Microwave filters for RF/microwave applications, John Wiley & Sons, (2001).
[24] G. Kompa, “Practical microstrip design and applications, Artech House, (2005).
[25] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip lines and slotlines, Second Edition, Artech House, (1996).
[26] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures, Artech House, (1980).
[27] E. J. Denlinger, “Losses of microstrip lines, IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[28] H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.
[29] A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, “Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric, IEEE Trans. Microwave Theory Tech., 54 [3] 1253–1261 (2006).
[30] H. A. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet, IEEE Trans. Microwave Theory Tech., 13 172–185 (1965).
[31] H. A. Wheeler, “Tramsmission line properties of a strip on a dielectric sheet on a plane, IEEE Trans., MTT-25 631–647 (1977).
[32] I. Wolff, “Microstrip bandpass filters using degenerate modes of microstrip ring resonator, Electron. Lett., 8 [12] 163–164 (1972).
[33] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[34] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators, IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[35] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators, IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[36] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[37] R. J. Cava, W. F. Peck, J. J. Krajewski, G. L. Roberts, B. P. Barber , H. M. O’ Bryan, and P. L. Gammel, “Improvement of the dielecctric properties of Ta2O5 through substitution with Al2O3, Appl. Phys. Lett. 70 [11] 1396–1398 (1997).