跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 05:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭原呈
研究生(外文):Yuan-ChengKuo
論文名稱:MgZn(Nb1-xTax)4O12陶瓷在微波頻段之研究與應用
論文名稱(外文):Study and Applications of MgZn(Nb1-xTax)4O12 Ceramics at Microwave Frequency
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:陶瓷微波頻段環形雙模態濾波器MgZnNb4O12MgZnTa4O12
外文關鍵詞:Microwave dielectric propertiesHigh-Q microwave dielectric ceramicsMgZnNb4O12MgZ nTa4O12filterCeramicsMicrowave Frequency
相關次數:
  • 被引用被引用:2
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
  在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗(Q>5,000)的介電材料,並探討其不同比例下之微波介電特性;第二部份將介紹其在被動元件之應用,並實作於不同基板上探討元件尺寸的改善。
  第一部份首先要介紹MgZnNb4O12、MgZnTa4O12陶瓷系統之微波介電特性。並使用與Nb5+相同離子半徑的Ta5+來取代Nb5+位置,形成MgZn(Nb1-xTax)4O12 (x = 0–1)固溶體,研究其材料特性及微波介電性質。由實驗中可得知MgZn(Nb0.2Ta0.8)4O12在1390°C燒結4小時可得到最佳之介電特性 ~ 35.1,Q׃~ 56,000 GHz (at 8.15 GHz),τf ~ –4.6 ppm/°C。
  第二部份我們設計及實作一操作在2.45 GHz的微帶線帶通濾波器,濾波器主要採用一環形雙模態濾波器做為主體,其雙模態能在通帶兩側產生傳輸零點,並在饋入端加入一Open-stub來抑制倍頻寄生響應。最後,我們將此電路實作在FR4、氧化鋁和MgZn(Nb0.2Ta0.8)4O12基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。

  There are two main subjects in this thesis. First, we will introduce the low loss dielectric material (Q>5,000), and try to discuss the microwave dielectric properties with different ratio. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
  First, the microwave dielectric properties of MgZnNb4O12、MgZnTa4O12 ceramic system have been investigated. Then use the same ionic radius of Ta5+ substitute Nb5+ from the MgZn(Nb1-xTax)4O12 (x = 0–1) solid solutions. The experiment results show that MgZn(Nb0.2Ta0.8)4O12 ceramics has the best properties at sintering temperature 1390°C for 4 hours, which could reach the best dielectric properties ~ 35.1, Q×f ~ 56,000 (at 8.15 GHz) and τf ~ –4.6 ppm/°C.
  Second, we design and fabricate a microstrip band-pass filter which resonator at 2.45 GHz. The filter was constructed by dual-mode microstrip rectangular ring bandpass filter. The transmission zeros on both sides of passband were designed by dual-mode. Finally, an open-stub was added to suppress the spurious response. The pattern was printed on FR4, Al2O3 and MgZn(Nb0.2Ta0.8)4O12 substrates. The frequency response of measurement results, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.

摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 介電材料原理 3
2-1材料的燒結 3
2-1-1材料燒結之擴散方式 3
2-1-2材料燒結之過程 4
2-1-3燒結的種類(固相、液相) 5
2-2介電共振器(Dielectric resonator:DR) 6
2-3微波介電材料之特性 9
2-3-1介電係數(Dielectric constant:K、εr) 9
2-3-2品質因數(Quality factor:Q) 13
2-3-3共振頻率溫度飄移係數(τf) 15
2-4 AB2O6陶瓷系統之微波介電特性 16
2-5 Columbite結構 18
2-6 Trirutile結構 19
第三章 微帶線及濾波器原理 20
3-1 濾波器原理 20
3-1-1濾波器的簡介 20
3-1-2濾波器之種類及其頻率響應 20
3-2 微帶線原理 24
3-2-1 微帶傳輸線的簡介 24
3-2-2 微帶線的傳輸模態 24
3-2-3 微帶線各項參數公式計算及考量 25
3-2-4 微帶線的不連續效應 28
3-2-5 微帶線的損失 34
3-3 微帶線諧振器種類 35
3-3-1 λ/4短路微帶線共振器 36
3-3-2 λ/2開路微帶線共振器 37
3-4 四分之一波長阻抗轉換器與open stub 39
3-5 雙模態直接耦合矩形帶通濾波器 41
3-5-1直接耦合矩形帶通濾波器 41
3-5-2雙模態濾波器原理 42
3-5-3雙模態直接耦合矩形帶通濾波器 44
第四章 實驗程序與量測方法 48
4-1 微波介電材料的製備 48
4-1-1 粉末的製備與球磨 49
4-1-2 粉末的煆燒 49
4-1-3 加入黏劑、過篩 49
4-1-4壓模成型、去黏劑及燒結 50
4-2 微波介電材料的量測與分析 51
4-2-1 密度測量 51
4-2-2 X-Ray分析 51
4-2-3 SEM、EDS分析 52
4-2-4 介電特性量測與分析 52
4-2-5 共振頻率溫度飄移係數之量測 58
4-3 濾波器的製作與量測 59
第五章 實驗結果與討論 61
5-1 MgZnNb4O12之微波介電特性 61
5-1-1 MgZnNb4O12之XRD相組成分析 61
5-1-2 MgZnNb4O12之EDS與SEM分析 63
5-1-3 MgZnNb4O12之密度分析結果 66
5-1-4 MgZnNb4O12之介電係數分析結果 67
5-1-5 MgZnNb4O12之品質因素 (Q×f) 分析結果 68
5-1-6 MgZnNb4O12之共振頻率溫度飄移係數分析結果 69
5-2 MgZnTa4O12之微波介電特性 70
5-2-1 MgZnTa4O12之XRD相組成分析 70
5-2-2 MgZnTa4O12之EDS與SEM分析 72
5-2-3 MgZnTa4O12之密度分析結果 75
5-2-4 MgZnTa4O12之介電係數分析結果 76
5-2-5 MgZnTa4O12之品質因素 (Q×f) 分析結果 77
5-2-6 MgZnTa4O12之共振頻率溫度飄移係數分析結果 78
5-3 MgZn(Nb1-xTax)4O12之微波介電特性 79
5-3-1 MgZn(Nb1-xTax)4O12之XRD相組成分析 79
5-3-2 MgZn(Nb1-xTax)4O12之SEM分析 81
5-3-3 MgZn(Nb1-xTax)4O12之密度分析結果 89
5-3-4 MgZn(Nb1-xTax)4O12之介電係數分析結果 90
5-3-5 MgZn(Nb1-xTax)4O12之品質因素 (Q×f) 分析結果 91
5-3-6 MgZn(Nb1-xTax)4O12之共振頻率溫度飄移係數分析結果 92
5-4 濾波器的模擬與實作 94
5-4-1 使用FR4(玻璃纖維基板)之模擬與實作結果 95
5-4-2 使用Al2O3之模擬與實作結果 97
5-4-3使用MgZn(Nb0.2Ta0.8)4O12自製基板之模擬與實作結果 99
第六章 結論 102
參考文獻 103

[1]H. M. O’bryan, J. Thomson, and J. K. Plourde, “A new BaO–TiO2 compound with temperature- stable high permittivity and low microwave loss, J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2] G. Wolfram and H. E. Göbel, “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z = 2), Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values, Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
[4] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled temperature coefficient of resonant frequency of Al2O3–TiO2 ceramics by annealing treatment, Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
[5] C. L. Huang, T. J. Yang, and C. C. Huang, “Low dielectric loss ceramics in the ZnAl2O4–TiO2 system as aτf compensator, J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[7] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[8] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators, Microwave SysTFm News., 13, 152–161 (1983).
[9] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators, IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[10] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[11] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
[12] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論, 曉出版社, (1988).
[13] H. J. Lee, I. T. Kim, and K. S. Hong, ‘‘Dielectric properties of AB2O6 compounds at microwave frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb,Ta),’’ Jpn. J. Appl. Phys., 36 [10A] L1318–20 (1997).
[14] Y. C. Zhang, Z. X. Yue, Z. L. Gui, L. T. Li, and C. M. Cheng , “Microwave dielectric properties of (Zn1-xMgx)Nb2O6 ceramics, Mater. Lett., 57 4531–4534 (2003).
[15] C. L. Huang, J. Y. Chen, Y. W. Tseng, C. Y. Jiang, and G. S. Huang, “High dielectric constant and low-loss microwave dielectric ceramics using (Zn0.95M0.05)Ta2O6 (M = Mn,Mg, and Ni) solid solutions, J. Am. Ceram. Soc., 93 [10] 3299–3304 (2010).
[16] C. L. Huang, J. Y. Chen, “Microwave dielectric characteristics of (Mg0.95M0.05)Ta2O6 (M = Ni, Zn, Mn) ceramic series, Mater. Lett., 76 28–31 (2012).
[17] Y. C. Zhang, Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, “Microwave dielectric properties of Zn(Nb1-xTax)2O6 ceramics, Mater. Lett., 58 1392–1395 (2004).
[18] W. C. Tzou , Y. C. Chen , C. F. Yang , C. M. Cheng , “Microwave dielectric characteristics of Mg(Ta1-xNbx)2O6 ceramics, Mater. Res. Bull., 41 1357–1363 (2006).
[19] G. R. Lumpkin, K. L. Smith, and M. G. Blackford, “Heavy ion irrasiation studies of columcite, brannerite, and pyrochlore structure types, J. Nucl. Mater., 289 177–187 (2001).
[20] C. Tealdi, M. S. Islam, L. Malavasi, and G. Flor, “Defect and dopant properties of MgTa2O6, J. Solid State Chem., 177 4359–4367 (2004).

[21] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI design techniques for analog and digital circuits, McGraw-Hill, (1990).
[22] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in microstrip, 16 [6] 342–350 (1968).
[23] J. S. Hong, M. J. Lancaster, “Microwave filters for RF/microwave applications, John Wiley & Sons, (2001).
[24] G. Kompa, “Practical microstrip design and applications, Artech House, (2005).
[25] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip lines and slotlines, Second Edition, Artech House, (1996).
[26] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures, Artech House, (1980).
[27] E. J. Denlinger, “Losses of microstrip lines, IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[28] H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.
[29] A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, “Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric, IEEE Trans. Microwave Theory Tech., 54 [3] 1253–1261 (2006).
[30] H. A. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet, IEEE Trans. Microwave Theory Tech., 13 172–185 (1965).
[31] H. A. Wheeler, “Tramsmission line properties of a strip on a dielectric sheet on a plane, IEEE Trans., MTT-25 631–647 (1977).
[32] I. Wolff, “Microstrip bandpass filters using degenerate modes of microstrip ring resonator, Electron. Lett., 8 [12] 163–164 (1972).

[33] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[34] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators, IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[35] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators, IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[36] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[37] R. J. Cava, W. F. Peck, J. J. Krajewski, G. L. Roberts, B. P. Barber , H. M. O’ Bryan, and P. L. Gammel, “Improvement of the dielecctric properties of Ta2O5 through substitution with Al2O3, Appl. Phys. Lett. 70 [11] 1396–1398 (1997).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top