跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許家龍
研究生(外文):Chia-LungHsu
論文名稱:氧化錫銦鋅透明導電層之光電與結構特性研究
論文名稱(外文):Optoelectronics properties and structure characteristics of the Zn-In-Sn-O transparent conducting layer
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:110
中文關鍵詞:氧化錫銦鋅歐姆接觸
外文關鍵詞:Zinc-Indium-Tin OxideOhmic contact
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以具有較低成本且同時擁有低電阻率和高光穿透率的透明導電氧化物薄膜做為研究目標。
首先我們利用技術已成熟且製程相對穩定、再現性高的共濺鍍系統來成長三元化合物氧化錫銦鋅透明導電薄膜。元素來源部份我們選擇已商業化、可順利取得之氧化錫銦(ITO, 10wt% Sn)及氧化鋅(ZnO)做為靶材,經由調整不同靶材之濺鍍功率及相關參數,以取得初步樣品。這些樣品經過元素比、結晶性、導電性及光穿透度等分析,決定出最佳製程參數。該製程參數樣品在光電特性和材料成本上,亦取得最佳平衡。
為進一步提升薄膜的導電性,以應用於較大面積元件市場(例如:太陽能元件、觸控玻璃等),以及後續實驗目標,所以我們透過電子束蒸鍍系統,沉積一層非常薄的銦金屬層於氧化錫銦鋅與玻璃基板之間,期許此架構能兼俱超薄金屬薄膜之導電性與透明導電薄膜之光穿透性。經由研究結果顯示,光電特性在未熱處理前,嚴重惡化。其主因乃後製程之氧化錫銦鋅薄膜於不同濺鍍基材表面(石英玻璃與銦金屬),所成長之結構和元素比亦不同,但該實驗組經由適當熱處理後,將使電阻率大幅改善(~10-4 Ω-cm),同時俱有優異的光穿透率(~93% @ 可見光譜範圍內)。Burstein-Moss effect 可說明此現象,主要是熱處理後的樣品,載子濃度提高了一個次方(~1021/cm3),過高的載子濃度會使電子佔據傳導帶最低能帶(階),進而影響光能隙或是光子的吸收。
最後,我們將此複層透明導電薄膜直接沉積於P型氮化鎵基材上。實驗結果顯示,有插入一層超薄銦金屬,在經過適當熱處理後的實驗組,和P型氮化鎵具有良好的歐姆接觸特性。其原因機制,應該是在後製程及熱處理過程中,氮化鎵表面少量的鎵向上擴散形成一極窄的高載子濃度電洞層,同時小量的鋅2+及銦3+原子佔據鎵空缺,使蕭特基能障降低,再配合大部份的銦原子擴散到上層氧化錫銦鋅層,使其形成退化性半導體,因此載子透過穿隧機制形成歐姆接觸。
後續將繼續將薄膜實作於完整LED結構上,以量測更多相關數據,以驗証其實務性及穩定性,及比較出光效率的優異性。
This thesis is mainly to lower cost with low resistivity and high optical transmittance of the transparent conductive oxide film as a research target.
The ternary compound zinc-indium-tin-oxide transparent conductive film were deposited using the co-sputtering system which the technology had matured and the process is relatively stable、high reproducibility. The source of targets, we selected already commercial and convenient obtained, were the indium tin oxide (ITO, 10wt% Sn) with the zinc oxide (ZnO) and through the adjustment of different target of power and related parameters to obtain preliminary samples. We determine the optimal process parameters by these samples through the elemental analysis of crystalline, electrical conductivity and optical transmittance. This process sample could achieve the best balance of the optical, electrical properties and materials costs.
To further enhance the conductivity of the films used in large-area components market (for example: solar cell modules, touch panel, etc.), and follow-up experiments so that we deposition a very thin indium metal layer between the zinc indium tin oxide with glass substrate by electron beam evaporation system. We hope that this architecture could concurrently good conductivity by thin metal films with good transmittance by transparent conductive oxide thin film. The results show that the optical and electrical properties were deterioration before the heat treatment. The main reason is the growth structure and elements of zinc-indium-tin-oxide thin films deposited at different material of substrate (quartz glass and indium metal) were different. Nevertheless, the resistivity and transmittance have significantly improved after heat treatment. Burstein,-Moss effect can explain this phenomenon, the carrier concentration of the heat-treated samples have increased an order of carrier concentration (~1021/cm3) which blocking the lowest states (filled states) in the conduction band from absorbing the photons.
Finally, we directly deposited this transparent conductive film on the p-GaN substrate. The experimental results show that the sample, insert a thin metal of indium, has a good Ohmic contact with P-type GaN after appropriate heat treatment. The mechanism of the result maybe is through a tunneling to form Ohmic contact due to a small amount of the gallium out-diffusion from p-GaN surface could create a narrowness deep acceptor-like (increases in hole concentration) region during post-annealing treatment while the In3+ or Zn2+ atoms diffused into gallium vacancies sites reduction in the Schottky barrier height and most of indium metal atoms spread to the upper ZITO layer to form the degenerative semiconductor.
Follow-up will continue to implement the films at LED and measure more data to verify its stability and relatively light efficiency.
摘要 ........................................................I
Abstract ...................................................III
誌謝 .......................................................V
Contents ...................................................VI
Table Captions ..............................................IX
Figure Captions .............................................XI
Chapter 1 Introduction ...................................1
1.1 Background ........................................1
1.2 History of TCO .....................................3
1.3 Motivation .........................................5
1.4 Overview of this thesis ...............................7
Chapter 2 Basic theory .................................11
2.1 Theory of co-sputter system ..........................11
2.2 Hall effect .........................................13
2.3 X-ray diffraction (XRD) .............................14
2.4 Transmission line model (TLM) .......................16
Chapter 3 Experiment result of Zn-In-Sn-O (ZITO) and ZITO/In thin films ..............................21
3.1 The procedures of ZITO thin films .....................23
3.1-1 Clean samples ...................................23
3.1-2 Co-Sputtering procedures .........................23
3.1-3 The influence and result of the sputter power .........24
3.1-4 The influence and result of the substrate temperature .28
3.1-5 The influence and result of the oxygen partial pressure .29
3.1-6 The influence and result of post annealing treatment ...30
3.2 The procedures of ZITO/In thin films ...................32
3.2-1 E-beam evaporation procedures ....................32
3.2-2 The influence and result of the In metal layer .........33
3.2-3 The influence and result of the In metal layer after post annealing treatment ...............................39
3.3 Summary ..........................................44
Chapter 4 Investigation of p type GaN contact with ZITO/In thin film ........................................79
4.1 The history and properties of GaN-base material ..........79
4.2 Procedure of P type GaN ..............................82
4.3 Procedure of TLM ...................................82
4.4 Experiment results and discussion ......................84
Chapter 5 Conclusion and Future work ................... 94
5.1 Conclusion ..........................................94
5.2 Future work ........................................95
Reference ..................................................96
[1] Ming-Jiunn et al. US6078064 Patern 2000.
[2] K. Badeker, Ann. Phys. (Berlin) 22 (4) (1907) 749.
[3] Q. Zhou, Z. Ji, B. Hu, C. Chen, L. Zhao, and C. Wang, “Low resistivity transparent conducting CdO thin films deposited by DC reactive magnetron sputtering at room temperature, Materials Letters, vol. 61, no. 2, pp. 531-534, 2007.
[4] M. Kul, A. S. Aybek, E. Turan, M. Zor, and S. Irmak, Effects of fluorine doping on the structural properties of the CdO films deposited by ultrasonic spray pyrolysis, Solar Energy Materials and Solar Cells, vol. 91, pp. 1927-1933, 2007.
[5] F. C. Eze, Oxygen partial pressure dependence of the structural properties of CdO thin films deposited by a modified reactive vacuum evaporation process, Materials Chemistry and Physics, vol. 89, pp. 205-210, 2005.
[6] R. Cusco, J. Ibanez, N. Domenech-Amador, L. Artus, J. Zuniga-Perez, and V. Munoz-Sanjose, Raman scattering of cadmium oxide epilayers grown by metal-organic vapor phase epitaxy, Journal of Applied Physics, vol. 107, pp. 063519-4, 2010.
[7] Z. Zhao, D. L. Morel, and C. S. Ferekides, Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition, Thin Solid Films, vol. 413, pp. 203-211, 2002.
[8] A.W. Metz, J.R. Ireland, J.-G. Zheng, R.P.S.M. Lobo, Y. Yang, J. Ni, C.L. Stern, V.P. Dravid, N. Bontemps, C.R. Kannewurf, K.R. Poeppelmeier, T.J. Marks, J. Am. Chem. Soc. 126 (2004) 8477-8492.
[9] Holland and G. Siddall, the properties of some reactively sputtered metal oxide films, Vacuum, vol. 3, pp. 375-391, 1953.
[10] K. Kumakura, T. Makimoto, and N. Kobayashi, Low-resistance nonalloyed ohmic contact to p-type GaN using strained InGaN contact layer, Applied Physics Letters, vol. 79, pp. 2588-2590, 2001.
[11] N. Romeo, A. Bosio, V. Canevari, M. Terheggen, and L. Vaillant Roca, Comparison of different conducting oxides as substrates for CdS/CdTe thin film solar cells, Thin Solid Films, vol. 431–432, pp. 364-368, 2003.
[12] Y. Meng, X.-l. Yang, H.-x. Chen, J. Shen, Y.-m. Jiang, Z.-j. Zhang, and Z.-y. Hua, A new transparent conductive thin film In2O3:Mo, Thin Solid Films, vol. 394, pp. 218-222, 2001.
[13] M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins, D. S. Ginley, and M. P. Taylor, Titanium-doped indium oxide: A high-mobility transparent conductor, Applied Physics Letters, vol. 87, pp. 032111-3, 2005.
[14] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting Zr-doped In[sub 2]O[sub 3] thin films for organic light-emitting diodes, Applied Physics Letters, vol. 78, pp. 1050-1052, 2001.
[15] R. K. Gupta, K. Ghosh, R. Patel, and P. K. Kahol, Effect of substrate temperature on opto-electrical properties of Nb-doped In2O3 thin films, Journal of Crystal Growth, vol. 310, pp. 4336-4339, 2008.
[16] B. Zhang, X. Dong, X. Xu, J. Wu, Preparation and characterization of tantalum-doped indium tin oxide films deposited by magnetron sputtering, Scripta Materialia, 58 (2008) 203-206.
[17] J. Feng, M. Yang, G. Li, and Q. Zhang, Amorphous tungsten-doped In2O3 transparent conductive films deposited at room temperature from metallic target, Journal of Non-Crystalline Solids, vol. 355, pp. 821-825, 2009.
[18] J. M. Camacho, R. Castro-Rodríguez, and J. L. Peña, Transparent conductive oxide thin films of CdTe-doped indium oxide prepared by pulsed-laser deposition, Optics & Laser Technology, vol. 40, pp. 895-900, 2008.
[19] T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, vol. 516, pp. 5822-5828, 2008.
[20] H. Hara, T. Shiro, and T. Yatabe, Optimization and Properties of Zn Doped Indium Oxide Films on Plastic Substrate, Japanese Journal of Applied Physics, vol. 43, p. 745, 2004.
[21] T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, vol. 516, pp. 5822-5828, 2008.
[22] J. W. Bae, S. W. Lee, and G. Y. Yeom, Doped-Fluorine on Electrical and Optical Properties of Tin Oxide Films Grown by Ozone-Assisted Thermal CVD, Journal of The Electrochemical Society, vol. 154, pp. D34-D37, 2007.
[23] P. Gerhardinger, D. Strickler, “Fluorine doped tin oxide coatings-over 50 years and going strong, Key Eng. Mater., Vol.380, pp. 169-178, 2008.
[24] S.-M. Park, T. Ikegami, and K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition, Thin Solid Films, vol. 513, pp. 90-94, 2006.
[25] H. Y. Liu, V. Avrutin, N. Izyumskaya, M. A. Reshchikov, Ü. Özgür, and H. Morkoç, Highly conductive and optically transparent GZO films grown under metal-rich conditions by plasma assisted MBE, physica status solidi (RRL) – Rapid Research Letters, vol. 4, pp. 70-72, 2010.
[26] S. Jinn-Kong, L. Ming-Lun, Y. S. Lu, and K. W. Shu, Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency, Quantum Electronics, IEEE Journal of, vol. 44, pp. 1211-1218, 2008.
[27] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Thin Solid Films, vol. 445, pp. 263-267, 2003.
[28]J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, Carrier concentration dependence of band gap shift in n-type ZnO:Al films, Journal of Applied Physics, vol. 101, pp. 083705-7, 2007.
[29] H. Wang, MH Xu, JW Xu, MF Ren, and L. Yang, Low temperature synthesis of sol-gel derived Al-doped ZnO thin films with rapid thermal annealing process, Journal of Materials Science: Materials in Electronics, vol. 21, pp. 589-594, 2010.
[30] F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hupkes, D. Hrunski, and B. Rech, Improved electrical transport in Al-doped zinc oxide by thermal treatment, Journal of Applied Physics, vol. 107, pp. 013708-8, 2010.
[31] B.-Z. Dong, H. Hu, G.-J. Fang, X.-Z. Zhao, D.-Y. Zheng, and Y.-P. Sun, Comprehensive investigation of structural, electrical, and optical properties for ZnO:Al films deposited at different substrate temperature and oxygen ambient, Journal of Applied Physics, vol. 103, pp. 073711-8, 2008.
[32] Z. Songqing, L. Wenwei, Y. Limin, Z. Kun, L. Hao, Z. Na, W. Aijun, Z. Yueliang, Z. Qingli, and S. Yulei, Lateral photovoltage of B-doped ZnO thin films induced by 10.6 µm CO 2 laser, Journal of Physics D: Applied Physics, vol. 42, p. 185101, 2009.
[33] B. Kotlyarchuk, V. Savchuk, and M. Oszwaldowski, Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method, Crystal Research and Technology, vol. 40, pp. 1118-1123, 2005.
[34] K. Yoshino, S. Oyama, M. Kato, M. Oshima, M. Yoneta, and T. Ikari, Annealing effects of In-doped ZnO films grown by spray pyrolysis method, Journal of Physics: Conference Series, vol. 100, p. 082019, 2008.
[35] Y. Qingjiang, F. Wuyou, Y. Cuiling, Y. Haibin, W. Ronghui, S. Yongming, L. Shikai, L. Zhanlian, L. Minghui, W. Guorui, S. Changlu, L. Yichun, and Z. Guangtian, Structural, electrical and optical properties of yttrium-doped ZnO thin films prepared by sol–gel method, Journal of Physics D: Applied Physics, vol. 40, p. 5592, 2007.
[36] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, Ultraviolet photoconductive detector based on epitaxial Mg[sub 0.34]Zn[sub 0.66]O thin films, Applied Physics Letters, vol. 78, pp. 2787-2789, 2001.
[37] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, and T. Siegrist, Growth and structural analysis of metalorganic chemical vapor deposited (112-bar 0) Mg[sub x]Zn[sub 1 - x]O (0 [less-than] x [less-than] 0.33) films on (011-bar 2) R-plane Al[sub 2]O[sub 3] substrates, Applied Physics Letters, vol. 82, pp. 742-744, 2003.
[38] Y. Zhang, J. He, Z. Ye, L. Zou, J. Huang, L. Zhu, and B. Zhao, Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition, Thin Solid Films, vol. 458, pp. 161-164, 2004.
[39] T. Tomio, H. Miki, H. Tabata, T. Kawai, and S. Kawai, Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping, Journal of Applied Physics, vol. 76, pp. 5886-5890, 1994.
[40] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, Y. Hirose, G. Kinoda, K. Inaba, T. Shimada, and T. Hasegawa, Novel transparent conducting oxide: Anatase Ti1−xNbxO2, Thin Solid Films, vol. 496, pp. 157-159, 2006.
[41] S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing, Thin Solid Films, vol. 516, pp. 5763-5767, 2008.
[42] H. Enoki, T. Nakayama, and J. Echigoya, The Electrical and Optical Properties of the ZnO-SnO2 Thin Films Prepared by RF Magnetron Sputtering, physica status solidi (a), vol. 129, pp. 181-191, 1992.
[43] T. Minami, H. Sonohara, S. Takata, and H. Sato, Highly Transparent and Conductive Zinc-Stannate Thin Films Prepared by RF Magnetron Sputtering, Japanese Journal of Applied Physics, vol. 33, p. L1693, 1994.
[44] T. Minami, Y. Takeda, S. Takata, and T. Kakumu, Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering, Thin Solid Films, vol. 308-309, pp. 13-18, 1997.
[45] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Highly Transparent and Conductive Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering, Japanese Journal of Applied Physics, vol. 34, p. L971, 1995.
[46] N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J. B. Leriche, and J. M. Tarascon, Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target, Thin Solid Films, vol. 360, pp. 233-240, 2000.
[47] H. Hiramatsu, W.S. Seo, K. Koumoto, “Electrical and Optical Properties of Radio-Frequency-Sputtered Thin Films of (ZnO)5In2O3 , Chemistry of Materials, vol. 10, pp. 3033-3039, 1998.
[48] T. Minami, T. Kakumu, S.Tanaka , “Preparation of transparent and conductive In2O3–ZnO films by radio frequency magnetron sputtering Journal of Vacuum Science & Technology ,vol. A14, pp.1704-1708, 1996.
[49] T. Moriga, D. D. Edwards, T. O. Mason, G. B. Palmer, K. R. Poeppelmeier, J. L. Schindler, C. R. Kannewurf and I. Nakabayashi, “Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxide-Indium Oxide System, Journal of the American Ceramic Society, vol.81, pp.1310-1316, 1998.
[50] D. S. Liu, C. C. Wu, and C. T. Lee, “A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature, Japanese Journal of Applied Physics, vol. 44 , pp. 5119-5121, 2005.
[51] Seong-Jin Kim, Member, IEEE, “Improvement of GaN-Based Light-Emitting Diode by Indium-Tin-Oxide Transparent Electrode and Vertical Electrodem, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 8, AUGUST 2005
[52] F. O. Adurodija, R. Brüning, I. O. Asia, H. Izumi, T. Ishihara, and H. Yoshioka, Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films, Applied Physics A: Materials Science & Processing, vol. 81, pp. 953-957, 2005.
[53] M. Sawada and M. Higuchi, Electrical properties of ITO films prepared by tin ion implantation in In2O3 film, Thin Solid Films, vol. 317, pp. 157-160, 1998.
[54] L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, Physical properties of RF sputtered ITO thin films and annealing effect, Journal of Physics D: Applied Physics, vol. 39, p. 184, 2006.
[55] V. Bhosle, A. Tiwari, and J. Narayan, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO, Applied Physics Letters, vol. 88, p. 032106, 2006.
[56] J.-K. Sheu, Y. S. Lu, M.-L. Lee, W. C. Lai, C. H. Kuo, and C.-J. Tun, Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer, Applied Physics Letters, vol. 90, pp. 263511-3, 2007.
[57] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Applied Physics Letters, vol. 76, pp. 259-261, 2000.
[58] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports 13, pp. 1, 1985.
[59] P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Göttingen 26 pp 98-100, 1918.
[60] J. I. Langford and A. J. C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol. 11, pp. 102-113, 1978.
[61] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, “Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering, Thin Solid Films, vol. 516, pp. 3105-3111, 2008.
[62] D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, “Thermal Stability of Indium Tin Oxide Thin Films Co-sputtered with Zinc Oxide, Thin Solid Films, vol. 516, pp.3196-3203, 2008.
[63] G. B. Palmer, K. R. Poeppelmeier, and T. O. Mason, Conductivity and Transparency of ZnO/SnO2-Cosubstituted In2O3, Chemistry of Materials, vol. 9, pp. 3121-3126, 1997.
[64] J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, J. W. F. Peck, and D. H. Rapkine, Zinc-indium-oxide: A high conductivity transparent conducting oxide, Applied Physics Letters, vol. 67, pp. 2246-2248, 1995.
[65] T. Minami, Transparent and conductive multicomponent oxide films prepared by magnetron sputtering, Journal of Vacuum Science & Technology A, vol.17, pp. 1765-1772, 1999.
[66] A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, and T. J.
Marks, MRS Bull., vol.25, pp. 45, 2000.
[67] D. B. Buchholz, D. E. Proffit, M. D. Wisser, T. O. Mason, and R. P. H. Chang, Electrical and band-gap properties of amorphous zinc–indium–tin oxide thin films, Progress in Natural Science: Materials International, vol. 22, pp. 1-6, 2012.
[68] S. M. Jejurikar, A. G. Banpurkar, A. V. Limaye, S. K. Date, S. I. Patil, K. P. Adhi, P. Misra, L. M. Kukreja, and R. Bathe, Structural, morphological, and electrical characterization of heteroepitaxial ZnO thin films deposited on Si (100) by pulsed laser deposition: Effect of annealing (800°C) in air, Journal of Applied Physics, vol. 99, pp. 014907-7, 2006.
[69] P. Erhart and K. Albe, Diffusion of zinc vacancies and interstitials in zinc oxide, Applied Physics Letters, vol. 88, pp. 201918-3, 2006.
[70] E. Burstein, Anomalous Optical Absorption Limit in InSb, Physical Review, vol. 93, pp. 632-633, 1954.
[71] K. C. Park, D. Y. Ma, and K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films, vol. 305, pp. 201-209, 1997.
[72] P. M. R. Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D. K. Avasthi, On the properties of indium doped ZnO thin films, Semiconductor Science and Technology, vol. 20, p. 120, 2005.
[73] M. Chen, R.F. Huang, L.S. Wen, “The ’99 Asian Conference on Electrochemistry in Japan, pp. 15, May, 1999.
[74] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, “Handbook of X-ray photoelectron spectroscopy, Phys. Electron., 1995.
[75] K. Hirokawa, F. Honda, and M. Oku, On the surface chemical reactions of metal and oxide XPS samples at 300–400° at a high vacuum produced by oil diffusion pumps, Journal of Electron Spectroscopy and Related Phenomena, vol. 6, pp. 333-345, 1975.
[76] J. C. C. Fan and J. B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, Journal of Applied Physics, vol. 48, pp. 3524-3531, 1977.
[77] C. E. Kim and I. Yun, Effects of nitrogen doping on device characteristics of InSnO thin film transistor, Applied Physics Letters, vol. 100, pp. 013501-3, 2012.
[78] P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, Luminescence mechanism of ZnO thin film investigated by XPS measurement, Applied Physics A: Materials Science & Processing, vol. 90, pp. 317-321, 2008.
[79] T. Szorenyi, L. D. Laude, I. Bertoti, Z. Kantor, and Z. Geretovszky, Excimer laser processing of indium-tin-oxide films: An optical investigation, Journal of Applied Physics, vol. 78, pp. 6211-6219, 1995.
[80] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, Journal of Applied Physics, vol. 76, pp. 1363-1398, 1994.
[81] S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides, Acta Biomaterialia, vol. 8, pp. 728-733, 2012.
[82] W. C. Johnson, J. B. Parson, and M. C. Crew, Nitrogen Compounds of Gallium. III, The Journal of Physical Chemistry, vol. 36, pp. 2651-2654, 1931/01/01 1931.
[83] H. P. Maruska and J. J. Tietjen, THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN, Applied Physics Letters, vol. 15, pp. 327-329, 1969.
[84] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, Electroluminescence in GaN, Journal of Luminescence, vol. 4, pp. 63-66, 1971.
[85] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Japanese Journal of Applied Physics, vol. 28, p. L2112, 1989.
[86] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, High-transparency Ni/Au ohmic contact to p-type GaN, Applied Physics Letters, vol. 74, pp. 2340-2342, 1999.
[87] S. J. Chang, C. S. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee, Senior Member, IEEE, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-Based Flip-Chip ITO LEDs, IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 28, NO. 2, MAY 2005
[88] H. Kim, D.-J. Kim, S.-J. Park, and H. Hwang, Effect of an oxidized Ni/Au p contact on the performance of GaN/InGaN multiple quantum well light-emitting diodes, Journal of Applied Physics, vol. 89, pp. 1506-1508, 2001.
[89] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, Indium tin oxide contacts to gallium nitride optoelectronic devices, Applied Physics Letters, vol. 74, pp. 3930-3932, 1999.
[90] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching, Japanese Journal of Applied Physics, vol. 43, p. L637, 2004.
[91] Hung-Wen Huang, C. C. Kao, J. T. Chu, H. C. Kuo, Member, IEEE, S. C. Wang, Member, IEEE, and C. C. Yu, “ Improvement of InGaN-GaN Light-Emitting Diode Performance With a Nano-Roughened p-GaN Surface, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 5, MAY 2005
[92] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced Output Power of Near-Ultraviolet InGaN-GaN LEDs Grown on Patterned Sapphire Substrates, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 2, FEBRUARY 2005.
[93] Chih-Chiang Kao, Hao-Chung Kuo, Member, IEEE, Hung-Wen Huang, Jung-Tang Chu, Yu-Chun Peng, Yong-Long Hsieh, C. Y. Luo, Shing-Chung Wang, Member, IEEE, Chang-Chin Yu, and Chia-Feng Lin, “Light-Output Enhancement in a Nitride-Based Light-Emitting Diode With 22 Undercut Sidewalls , IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 1, JANUARY 2005.
[94] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, High-power truncated-inverted-pyramid (AlxGa1 - x)0.5In0.5P/GaP light-emitting diodes exhibiting ) 50% external quantum efficiency, Applied Physics Letters, vol. 75, pp. 2365-2367, 1999.
[95] Chul Huh, Ji-Myon Lee, Dong-Joon Kim, and Seong-Ju Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer JOURNAL OF APPLIED PHYSICS, VOLUME 92, NUMBER 5, 1 SEPTEMBER 2002.
[96] D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, A study of transparent indium tin oxide (ITO) contact to p-GaN, Thin Solid Films, vol. 398–399, pp. 87-92, 2001.
[97] J.-L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy, Applied Physics Letters, vol. 74, pp. 2289-2291, 1999.
[98] C. Huh, S.-W. Kim, H.-M. Kim, D.-J. Kim, and S.-J. Park, Effect of alcohol-based sulfur treatment on Pt Ohmic contacts to p-type GaN, Applied Physics Letters, vol. 78, pp. 1942-1944, 2001.
[99] T. Minami, T. Miyata, and T. Yamamoto, Surf. Coat. Technol. 108-109, 583 (1998).
[100] V. M. Bermudez, D. D. Koleske, and A. E. Wickenden, The dependence of the structure and electronic properties of wurtzite GaN surfaces on the method of preparation, Applied Surface Science, vol. 126, pp. 69-82, 1998.
[101] J.-H. Lim, D.-K. Hwang, H.-S. Kim, J.-Y. Oh, J.-H. Yang, R. Navamathavan, and S.-J. Park, Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN, Applied Physics Letters, vol. 85, pp. 6191-6193, 2004.
[102] T. Gessmann, J. W. Graff, Y. L. Li, E. L. Waldron, and E. F. Schubert, Ohmic contact technology in III nitrides using polarization effects of cap layers, Journal of Applied Physics, vol. 92, pp. 3740-3744, 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top