|
[1] Ming-Jiunn et al. US6078064 Patern 2000. [2] K. Badeker, Ann. Phys. (Berlin) 22 (4) (1907) 749. [3] Q. Zhou, Z. Ji, B. Hu, C. Chen, L. Zhao, and C. Wang, “Low resistivity transparent conducting CdO thin films deposited by DC reactive magnetron sputtering at room temperature, Materials Letters, vol. 61, no. 2, pp. 531-534, 2007. [4] M. Kul, A. S. Aybek, E. Turan, M. Zor, and S. Irmak, Effects of fluorine doping on the structural properties of the CdO films deposited by ultrasonic spray pyrolysis, Solar Energy Materials and Solar Cells, vol. 91, pp. 1927-1933, 2007. [5] F. C. Eze, Oxygen partial pressure dependence of the structural properties of CdO thin films deposited by a modified reactive vacuum evaporation process, Materials Chemistry and Physics, vol. 89, pp. 205-210, 2005. [6] R. Cusco, J. Ibanez, N. Domenech-Amador, L. Artus, J. Zuniga-Perez, and V. Munoz-Sanjose, Raman scattering of cadmium oxide epilayers grown by metal-organic vapor phase epitaxy, Journal of Applied Physics, vol. 107, pp. 063519-4, 2010. [7] Z. Zhao, D. L. Morel, and C. S. Ferekides, Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition, Thin Solid Films, vol. 413, pp. 203-211, 2002. [8] A.W. Metz, J.R. Ireland, J.-G. Zheng, R.P.S.M. Lobo, Y. Yang, J. Ni, C.L. Stern, V.P. Dravid, N. Bontemps, C.R. Kannewurf, K.R. Poeppelmeier, T.J. Marks, J. Am. Chem. Soc. 126 (2004) 8477-8492. [9] Holland and G. Siddall, the properties of some reactively sputtered metal oxide films, Vacuum, vol. 3, pp. 375-391, 1953. [10] K. Kumakura, T. Makimoto, and N. Kobayashi, Low-resistance nonalloyed ohmic contact to p-type GaN using strained InGaN contact layer, Applied Physics Letters, vol. 79, pp. 2588-2590, 2001. [11] N. Romeo, A. Bosio, V. Canevari, M. Terheggen, and L. Vaillant Roca, Comparison of different conducting oxides as substrates for CdS/CdTe thin film solar cells, Thin Solid Films, vol. 431–432, pp. 364-368, 2003. [12] Y. Meng, X.-l. Yang, H.-x. Chen, J. Shen, Y.-m. Jiang, Z.-j. Zhang, and Z.-y. Hua, A new transparent conductive thin film In2O3:Mo, Thin Solid Films, vol. 394, pp. 218-222, 2001. [13] M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins, D. S. Ginley, and M. P. Taylor, Titanium-doped indium oxide: A high-mobility transparent conductor, Applied Physics Letters, vol. 87, pp. 032111-3, 2005. [14] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting Zr-doped In[sub 2]O[sub 3] thin films for organic light-emitting diodes, Applied Physics Letters, vol. 78, pp. 1050-1052, 2001. [15] R. K. Gupta, K. Ghosh, R. Patel, and P. K. Kahol, Effect of substrate temperature on opto-electrical properties of Nb-doped In2O3 thin films, Journal of Crystal Growth, vol. 310, pp. 4336-4339, 2008. [16] B. Zhang, X. Dong, X. Xu, J. Wu, Preparation and characterization of tantalum-doped indium tin oxide films deposited by magnetron sputtering, Scripta Materialia, 58 (2008) 203-206. [17] J. Feng, M. Yang, G. Li, and Q. Zhang, Amorphous tungsten-doped In2O3 transparent conductive films deposited at room temperature from metallic target, Journal of Non-Crystalline Solids, vol. 355, pp. 821-825, 2009. [18] J. M. Camacho, R. Castro-Rodríguez, and J. L. Peña, Transparent conductive oxide thin films of CdTe-doped indium oxide prepared by pulsed-laser deposition, Optics & Laser Technology, vol. 40, pp. 895-900, 2008. [19] T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, vol. 516, pp. 5822-5828, 2008. [20] H. Hara, T. Shiro, and T. Yatabe, Optimization and Properties of Zn Doped Indium Oxide Films on Plastic Substrate, Japanese Journal of Applied Physics, vol. 43, p. 745, 2004. [21] T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, vol. 516, pp. 5822-5828, 2008. [22] J. W. Bae, S. W. Lee, and G. Y. Yeom, Doped-Fluorine on Electrical and Optical Properties of Tin Oxide Films Grown by Ozone-Assisted Thermal CVD, Journal of The Electrochemical Society, vol. 154, pp. D34-D37, 2007. [23] P. Gerhardinger, D. Strickler, “Fluorine doped tin oxide coatings-over 50 years and going strong, Key Eng. Mater., Vol.380, pp. 169-178, 2008. [24] S.-M. Park, T. Ikegami, and K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition, Thin Solid Films, vol. 513, pp. 90-94, 2006. [25] H. Y. Liu, V. Avrutin, N. Izyumskaya, M. A. Reshchikov, Ü. Özgür, and H. Morkoç, Highly conductive and optically transparent GZO films grown under metal-rich conditions by plasma assisted MBE, physica status solidi (RRL) – Rapid Research Letters, vol. 4, pp. 70-72, 2010. [26] S. Jinn-Kong, L. Ming-Lun, Y. S. Lu, and K. W. Shu, Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency, Quantum Electronics, IEEE Journal of, vol. 44, pp. 1211-1218, 2008. [27] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Thin Solid Films, vol. 445, pp. 263-267, 2003. [28]J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, Carrier concentration dependence of band gap shift in n-type ZnO:Al films, Journal of Applied Physics, vol. 101, pp. 083705-7, 2007. [29] H. Wang, MH Xu, JW Xu, MF Ren, and L. Yang, Low temperature synthesis of sol-gel derived Al-doped ZnO thin films with rapid thermal annealing process, Journal of Materials Science: Materials in Electronics, vol. 21, pp. 589-594, 2010. [30] F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hupkes, D. Hrunski, and B. Rech, Improved electrical transport in Al-doped zinc oxide by thermal treatment, Journal of Applied Physics, vol. 107, pp. 013708-8, 2010. [31] B.-Z. Dong, H. Hu, G.-J. Fang, X.-Z. Zhao, D.-Y. Zheng, and Y.-P. Sun, Comprehensive investigation of structural, electrical, and optical properties for ZnO:Al films deposited at different substrate temperature and oxygen ambient, Journal of Applied Physics, vol. 103, pp. 073711-8, 2008. [32] Z. Songqing, L. Wenwei, Y. Limin, Z. Kun, L. Hao, Z. Na, W. Aijun, Z. Yueliang, Z. Qingli, and S. Yulei, Lateral photovoltage of B-doped ZnO thin films induced by 10.6 µm CO 2 laser, Journal of Physics D: Applied Physics, vol. 42, p. 185101, 2009. [33] B. Kotlyarchuk, V. Savchuk, and M. Oszwaldowski, Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method, Crystal Research and Technology, vol. 40, pp. 1118-1123, 2005. [34] K. Yoshino, S. Oyama, M. Kato, M. Oshima, M. Yoneta, and T. Ikari, Annealing effects of In-doped ZnO films grown by spray pyrolysis method, Journal of Physics: Conference Series, vol. 100, p. 082019, 2008. [35] Y. Qingjiang, F. Wuyou, Y. Cuiling, Y. Haibin, W. Ronghui, S. Yongming, L. Shikai, L. Zhanlian, L. Minghui, W. Guorui, S. Changlu, L. Yichun, and Z. Guangtian, Structural, electrical and optical properties of yttrium-doped ZnO thin films prepared by sol–gel method, Journal of Physics D: Applied Physics, vol. 40, p. 5592, 2007. [36] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, Ultraviolet photoconductive detector based on epitaxial Mg[sub 0.34]Zn[sub 0.66]O thin films, Applied Physics Letters, vol. 78, pp. 2787-2789, 2001. [37] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, and T. Siegrist, Growth and structural analysis of metalorganic chemical vapor deposited (112-bar 0) Mg[sub x]Zn[sub 1 - x]O (0 [less-than] x [less-than] 0.33) films on (011-bar 2) R-plane Al[sub 2]O[sub 3] substrates, Applied Physics Letters, vol. 82, pp. 742-744, 2003. [38] Y. Zhang, J. He, Z. Ye, L. Zou, J. Huang, L. Zhu, and B. Zhao, Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition, Thin Solid Films, vol. 458, pp. 161-164, 2004. [39] T. Tomio, H. Miki, H. Tabata, T. Kawai, and S. Kawai, Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping, Journal of Applied Physics, vol. 76, pp. 5886-5890, 1994. [40] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, Y. Hirose, G. Kinoda, K. Inaba, T. Shimada, and T. Hasegawa, Novel transparent conducting oxide: Anatase Ti1−xNbxO2, Thin Solid Films, vol. 496, pp. 157-159, 2006. [41] S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing, Thin Solid Films, vol. 516, pp. 5763-5767, 2008. [42] H. Enoki, T. Nakayama, and J. Echigoya, The Electrical and Optical Properties of the ZnO-SnO2 Thin Films Prepared by RF Magnetron Sputtering, physica status solidi (a), vol. 129, pp. 181-191, 1992. [43] T. Minami, H. Sonohara, S. Takata, and H. Sato, Highly Transparent and Conductive Zinc-Stannate Thin Films Prepared by RF Magnetron Sputtering, Japanese Journal of Applied Physics, vol. 33, p. L1693, 1994. [44] T. Minami, Y. Takeda, S. Takata, and T. Kakumu, Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering, Thin Solid Films, vol. 308-309, pp. 13-18, 1997. [45] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Highly Transparent and Conductive Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering, Japanese Journal of Applied Physics, vol. 34, p. L971, 1995. [46] N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J. B. Leriche, and J. M. Tarascon, Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target, Thin Solid Films, vol. 360, pp. 233-240, 2000. [47] H. Hiramatsu, W.S. Seo, K. Koumoto, “Electrical and Optical Properties of Radio-Frequency-Sputtered Thin Films of (ZnO)5In2O3 , Chemistry of Materials, vol. 10, pp. 3033-3039, 1998. [48] T. Minami, T. Kakumu, S.Tanaka , “Preparation of transparent and conductive In2O3–ZnO films by radio frequency magnetron sputtering Journal of Vacuum Science & Technology ,vol. A14, pp.1704-1708, 1996. [49] T. Moriga, D. D. Edwards, T. O. Mason, G. B. Palmer, K. R. Poeppelmeier, J. L. Schindler, C. R. Kannewurf and I. Nakabayashi, “Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxide-Indium Oxide System, Journal of the American Ceramic Society, vol.81, pp.1310-1316, 1998. [50] D. S. Liu, C. C. Wu, and C. T. Lee, “A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature, Japanese Journal of Applied Physics, vol. 44 , pp. 5119-5121, 2005. [51] Seong-Jin Kim, Member, IEEE, “Improvement of GaN-Based Light-Emitting Diode by Indium-Tin-Oxide Transparent Electrode and Vertical Electrodem, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 8, AUGUST 2005 [52] F. O. Adurodija, R. Brüning, I. O. Asia, H. Izumi, T. Ishihara, and H. Yoshioka, Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films, Applied Physics A: Materials Science & Processing, vol. 81, pp. 953-957, 2005. [53] M. Sawada and M. Higuchi, Electrical properties of ITO films prepared by tin ion implantation in In2O3 film, Thin Solid Films, vol. 317, pp. 157-160, 1998. [54] L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, Physical properties of RF sputtered ITO thin films and annealing effect, Journal of Physics D: Applied Physics, vol. 39, p. 184, 2006. [55] V. Bhosle, A. Tiwari, and J. Narayan, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO, Applied Physics Letters, vol. 88, p. 032106, 2006. [56] J.-K. Sheu, Y. S. Lu, M.-L. Lee, W. C. Lai, C. H. Kuo, and C.-J. Tun, Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer, Applied Physics Letters, vol. 90, pp. 263511-3, 2007. [57] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Applied Physics Letters, vol. 76, pp. 259-261, 2000. [58] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports 13, pp. 1, 1985. [59] P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Göttingen 26 pp 98-100, 1918. [60] J. I. Langford and A. J. C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol. 11, pp. 102-113, 1978. [61] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, “Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering, Thin Solid Films, vol. 516, pp. 3105-3111, 2008. [62] D. S. Liu, C. S. Sheu, C. T. Lee, and C. H. Lin, “Thermal Stability of Indium Tin Oxide Thin Films Co-sputtered with Zinc Oxide, Thin Solid Films, vol. 516, pp.3196-3203, 2008. [63] G. B. Palmer, K. R. Poeppelmeier, and T. O. Mason, Conductivity and Transparency of ZnO/SnO2-Cosubstituted In2O3, Chemistry of Materials, vol. 9, pp. 3121-3126, 1997. [64] J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, J. W. F. Peck, and D. H. Rapkine, Zinc-indium-oxide: A high conductivity transparent conducting oxide, Applied Physics Letters, vol. 67, pp. 2246-2248, 1995. [65] T. Minami, Transparent and conductive multicomponent oxide films prepared by magnetron sputtering, Journal of Vacuum Science & Technology A, vol.17, pp. 1765-1772, 1999. [66] A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, and T. J. Marks, MRS Bull., vol.25, pp. 45, 2000. [67] D. B. Buchholz, D. E. Proffit, M. D. Wisser, T. O. Mason, and R. P. H. Chang, Electrical and band-gap properties of amorphous zinc–indium–tin oxide thin films, Progress in Natural Science: Materials International, vol. 22, pp. 1-6, 2012. [68] S. M. Jejurikar, A. G. Banpurkar, A. V. Limaye, S. K. Date, S. I. Patil, K. P. Adhi, P. Misra, L. M. Kukreja, and R. Bathe, Structural, morphological, and electrical characterization of heteroepitaxial ZnO thin films deposited on Si (100) by pulsed laser deposition: Effect of annealing (800°C) in air, Journal of Applied Physics, vol. 99, pp. 014907-7, 2006. [69] P. Erhart and K. Albe, Diffusion of zinc vacancies and interstitials in zinc oxide, Applied Physics Letters, vol. 88, pp. 201918-3, 2006. [70] E. Burstein, Anomalous Optical Absorption Limit in InSb, Physical Review, vol. 93, pp. 632-633, 1954. [71] K. C. Park, D. Y. Ma, and K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films, vol. 305, pp. 201-209, 1997. [72] P. M. R. Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D. K. Avasthi, On the properties of indium doped ZnO thin films, Semiconductor Science and Technology, vol. 20, p. 120, 2005. [73] M. Chen, R.F. Huang, L.S. Wen, “The ’99 Asian Conference on Electrochemistry in Japan, pp. 15, May, 1999. [74] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, “Handbook of X-ray photoelectron spectroscopy, Phys. Electron., 1995. [75] K. Hirokawa, F. Honda, and M. Oku, On the surface chemical reactions of metal and oxide XPS samples at 300–400° at a high vacuum produced by oil diffusion pumps, Journal of Electron Spectroscopy and Related Phenomena, vol. 6, pp. 333-345, 1975. [76] J. C. C. Fan and J. B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films, Journal of Applied Physics, vol. 48, pp. 3524-3531, 1977. [77] C. E. Kim and I. Yun, Effects of nitrogen doping on device characteristics of InSnO thin film transistor, Applied Physics Letters, vol. 100, pp. 013501-3, 2012. [78] P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, Luminescence mechanism of ZnO thin film investigated by XPS measurement, Applied Physics A: Materials Science & Processing, vol. 90, pp. 317-321, 2008. [79] T. Szorenyi, L. D. Laude, I. Bertoti, Z. Kantor, and Z. Geretovszky, Excimer laser processing of indium-tin-oxide films: An optical investigation, Journal of Applied Physics, vol. 78, pp. 6211-6219, 1995. [80] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, Journal of Applied Physics, vol. 76, pp. 1363-1398, 1994. [81] S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides, Acta Biomaterialia, vol. 8, pp. 728-733, 2012. [82] W. C. Johnson, J. B. Parson, and M. C. Crew, Nitrogen Compounds of Gallium. III, The Journal of Physical Chemistry, vol. 36, pp. 2651-2654, 1931/01/01 1931. [83] H. P. Maruska and J. J. Tietjen, THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN, Applied Physics Letters, vol. 15, pp. 327-329, 1969. [84] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, Electroluminescence in GaN, Journal of Luminescence, vol. 4, pp. 63-66, 1971. [85] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Japanese Journal of Applied Physics, vol. 28, p. L2112, 1989. [86] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, High-transparency Ni/Au ohmic contact to p-type GaN, Applied Physics Letters, vol. 74, pp. 2340-2342, 1999. [87] S. J. Chang, C. S. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee, Senior Member, IEEE, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-Based Flip-Chip ITO LEDs, IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 28, NO. 2, MAY 2005 [88] H. Kim, D.-J. Kim, S.-J. Park, and H. Hwang, Effect of an oxidized Ni/Au p contact on the performance of GaN/InGaN multiple quantum well light-emitting diodes, Journal of Applied Physics, vol. 89, pp. 1506-1508, 2001. [89] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, Indium tin oxide contacts to gallium nitride optoelectronic devices, Applied Physics Letters, vol. 74, pp. 3930-3932, 1999. [90] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching, Japanese Journal of Applied Physics, vol. 43, p. L637, 2004. [91] Hung-Wen Huang, C. C. Kao, J. T. Chu, H. C. Kuo, Member, IEEE, S. C. Wang, Member, IEEE, and C. C. Yu, “ Improvement of InGaN-GaN Light-Emitting Diode Performance With a Nano-Roughened p-GaN Surface, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 5, MAY 2005 [92] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced Output Power of Near-Ultraviolet InGaN-GaN LEDs Grown on Patterned Sapphire Substrates, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 2, FEBRUARY 2005. [93] Chih-Chiang Kao, Hao-Chung Kuo, Member, IEEE, Hung-Wen Huang, Jung-Tang Chu, Yu-Chun Peng, Yong-Long Hsieh, C. Y. Luo, Shing-Chung Wang, Member, IEEE, Chang-Chin Yu, and Chia-Feng Lin, “Light-Output Enhancement in a Nitride-Based Light-Emitting Diode With 22 Undercut Sidewalls , IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 1, JANUARY 2005. [94] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, High-power truncated-inverted-pyramid (AlxGa1 - x)0.5In0.5P/GaP light-emitting diodes exhibiting ) 50% external quantum efficiency, Applied Physics Letters, vol. 75, pp. 2365-2367, 1999. [95] Chul Huh, Ji-Myon Lee, Dong-Joon Kim, and Seong-Ju Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer JOURNAL OF APPLIED PHYSICS, VOLUME 92, NUMBER 5, 1 SEPTEMBER 2002. [96] D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, A study of transparent indium tin oxide (ITO) contact to p-GaN, Thin Solid Films, vol. 398–399, pp. 87-92, 2001. [97] J.-L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy, Applied Physics Letters, vol. 74, pp. 2289-2291, 1999. [98] C. Huh, S.-W. Kim, H.-M. Kim, D.-J. Kim, and S.-J. Park, Effect of alcohol-based sulfur treatment on Pt Ohmic contacts to p-type GaN, Applied Physics Letters, vol. 78, pp. 1942-1944, 2001. [99] T. Minami, T. Miyata, and T. Yamamoto, Surf. Coat. Technol. 108-109, 583 (1998). [100] V. M. Bermudez, D. D. Koleske, and A. E. Wickenden, The dependence of the structure and electronic properties of wurtzite GaN surfaces on the method of preparation, Applied Surface Science, vol. 126, pp. 69-82, 1998. [101] J.-H. Lim, D.-K. Hwang, H.-S. Kim, J.-Y. Oh, J.-H. Yang, R. Navamathavan, and S.-J. Park, Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN, Applied Physics Letters, vol. 85, pp. 6191-6193, 2004. [102] T. Gessmann, J. W. Graff, Y. L. Li, E. L. Waldron, and E. F. Schubert, Ohmic contact technology in III nitrides using polarization effects of cap layers, Journal of Applied Physics, vol. 92, pp. 3740-3744, 2002.
|