跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳潔瑩
研究生(外文):Chieh-YingChen
論文名稱:聚甲基丙烯酸甲酯修飾奈米柱狀結構應用於太陽能電池之抗反射層
論文名稱(外文):Anti-reflection Layer of PMMA Modified Nanowires Used in Solar Cells
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:124
中文關鍵詞:抗反射層奈米線PMMA
外文關鍵詞:Anti-reflection LayerNanowiresPMMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
太陽能發電為在石化能源逐漸短缺的時代被視為最佳替代能源,但目前太陽能電池的轉換效率仍偏低,且製作成本較高,為了提升轉換效率,在太陽能的照光面通常都會製作一層抗反射層來減少入射光的反射,本論文使用簡易的製程來製作倒金字塔型奈米微結構當作太陽能抗反射層,此製程擁有能大面積製作,製作成本低的優點。
本論文先利用溶液法成長氧化鋅奈米線,此方法可在基材表面完成大面積的奈米結構,製程溫度低,因此成本較低,並藉由改變成長水溶液條件與種子層的濺鍍參數來形成不同長度、徑度與密度的奈米線,量測光學特性找到最佳參數作為太陽能抗反射層,能使太陽能轉換效率由8.24%提升至11.47%。
為了再提升轉換效率,將奈米線由柱狀修飾成圓錐狀,整片抗反射層就形成倒金字塔狀,修飾奈米線的方法為塗佈上PMMA並藉著兩者蝕刻速率不同來製作而成,此法不必使用黃光等高成本的步驟即可達成,此製程方式簡易、製作成本低,藉此方法來製作抗反射層來改變太陽能電池的表面微結構,促使光照入表面時反射率降低,並使太陽能電池的轉換效率更加提升至14.41%。

Solar energy has been considered the best alternative solution replacing for petrochemical energy. Disadvantages of solar cells are low conversion efficiency and costly in production. To enhance performance of solar cells, anti-reflection layers, which reduce the reflection of light, are adopted in many studies. This thesis aims at development of new simple way to make obpyramidal nanostructure as a solar anti-reflection layer.
In the first part, we investigated solution-grown ZnO nanowires arrays on seed layer. This method has advantages of large area, low temperature and low cost. The morphology of nanowires was controlled through solution conditions and the parameter of seed layer. The morphology of nanowires which owns best optical characteristics was adopted to form anti-reflection layer. We demonstrate that the light harvest efficiency of the solar cells can be improved from 8.24% to 11.47% by using the ZnO nanowires arrays as the anti-reflection layer on Si solar cells.
In the second part, to further enhance conversion efficiency, we adopt PMMA to modify nanowires. Due to PMMA and nanowires has different etching rate, column shape nanowires can be modified into obpyramidal shape. It’s a simple method to make anti-reflection layers which change solar cell surface to reduce albedo. The light harvest efficiency of the Si solar cells can be greatly improved to 14.41% by using PMMA modified ZnO nanowires arrays as AR layer.

第一章 緒論.......................................1
1-1 前言.........................................1
1-2 研究動機.....................................2
1-3 論文架構.....................................4

第二章 理論基礎和文獻回顧.........................5
2-1 氧化鋅奈米線..................................5
2-1-1 氧化鋅(ZnO)材料簡介........................5
2-1-2 奈米線合成機制.............................8
2-1-3 一維氧化鋅奈米線製備方法...................10
2-1-4 奈米線的發展與應用.........................16
2-2 太陽能電池....................................22
2-2-1 太陽能源概論...............................22
2-2-2 太陽能電池種類.............................24
2-2-3 發電原理...................................25
2-2-4 轉換效率測定...............................27
2-3 抗反射膜......................................30
2-3-1 抗反射膜原理...............................30
2-3-2 抗反射膜分類...............................31
2-3-3 破壞性折射率機制...........................34
2-3-4 漸變式折射率機制...........................34
2-3-5 抗反射膜發展概況...........................35

第三章 實驗步驟與方法.............................39
3-1 實驗材料......................................39
3-1-1 基板材料...................................39
3-1-2 靶材材料...................................39
3-1-3 實驗藥品及氣體.............................39
3-2 基板的清洗方法................................40
3-3 樣品的準備及實驗過程..........................41
3-3-1 實驗流程...................................41
3-3-2 真空濺鍍之實驗步驟.........................43
3-3-3 水熱法成長氧化鋅奈米線之實驗步驟...........45
3-3-4 塗佈PMMA與蝕刻之實驗步驟...................45
3-4 實驗分析儀器..................................46
3-4-1 場發射掃描式電子顯微鏡 (SEM)...............46
3-4-2 X光繞射分析儀(XRD).........................49
3-4-3 紫外光/可見光光譜儀....................... 53
3-4-4 太陽能電池 I-V曲線量測儀器.................54

第四章 結果與討論.................................56
4-1 奈米線成長條件研究............................57
4-1-1 改變奈米線成長水溶液濃度...................57
4-1-2 改變奈米線成長時間.........................61
4-2 不同種子層下奈米線形貌與特性研究..............65
4-2-1 改變種子層厚度.............................65
4-2-2 改變種子層濺鍍的射頻功率...................78
4-2-3 改變種子層濺鍍壓力.........................92
4-3 塗佈PMMA與蝕刻................................102
4-3-1 形貌分析...................................102
4-3-2 光學性質分析...............................106
4-4 太陽能電池效率................................109
4-4-1 太陽能結構與形貌...........................109
4-4-2 抗反射能力探討.............................112
4-4-3 太陽能電池效率.............................116

第五章 結論與未來展望.............................118
5-1 奈米線成長條件研究............................118
5-2 奈米線形貌分析................................118
5-3 塗佈PMMA與蝕刻................................119
5-4 太陽能電池效率................................119
5-5 未來研究建議..................................119

參考文獻..........................................120

[1]R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique, Applied Physics Letters, vol. 91, p. 231113, 2007.
[2]Z. Ye, J. Lu, Y. Zhang, Y. Zeng, L. Chen, F. Zhuge, G. Yuan, H. He, L. Zhu, and J. Huang, ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers, Applied Physics Letters, vol. 91, p. 113503, 2007.
[3]J. Xiao, X. Zhang, and G. Zhang, Field emission from zinc oxide nanotowers: the role of the top morphology, Nanotechnology, vol. 19, p. 295706, 2008.
[4]A. Datta, P. G. Chavan, F. J. Sheini, M. A. More, D. S. Joag, and A. Patra, Growth, Optical, and Field Emission Properties of Aligned CdS Nanowires, Crystal Growth and Design, vol. 9, pp. 4157-4162, 2009.
[5]Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles, Nano letters, vol. 8, pp. 1649-1653, 2008.
[6]H. K. Yadav, K. Sreenivas, and V. Gupta, Enhanced response from metal/ZnO bilayer ultraviolet photodetector, Applied Physics Letters, vol. 90, pp. 172113-172113-3, 2007.
[7]L. Liao, H. Lu, J. Li, H. He, D. Wang, D. Fu, C. Liu, and W. Zhang, Size dependence of gas sensitivity of ZnO nanorods, The Journal of Physical Chemistry C, vol. 111, pp. 1900-1903, 2007.
[8]L. D. Wang, F. Y. Zhou, X. M. Li, L. D. Sun, X. Song, Y. Jin, J. M. Li, G. Q. Kong, H. Qi, and J. Cui, Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54, Nature genetics, vol. 42, pp. 759-763, 2010.
[9]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano letters, vol. 5, pp. 1231-1236, 2005.
[10]K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[11]R. Nosker, P. Mark, and J. Levine, Polar surfaces of wurtzite and zincblende lattices, Surface Science, vol. 19, pp. 291-317, 1970.
[12]B. Aubert, A. Bazan, A. Boucham, D. Boutigny, I. De Bonis, J. Favier, J. M. Gaillard, A. Jeremie, Y. Karyotakis, and T. Le Flour, The BABAR detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 479, pp. 1-116, 2002.
[13]C. M. Lieber and Z. L. Wang, Functional nanowires, Mrs Bulletin, vol. 32, pp. 99-108, 2007.
[14]P. Yang and C. M. Lieber, Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites, Journal of materials research, vol. 12, pp. 2981-2996, 1997.
[15]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One?Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, vol. 15, pp. 353-389, 2003.
[16]A. Yin, J. Li, W. Jian, A. Bennett, and J. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition, Applied Physics Letters, vol. 79, p. 1039, 2001.
[17]Y. Xia and P. Yang, Guest editorial: Chemistry and physics of nanowires, Advanced Materials, vol. 15, pp. 351-352, 2003.
[18]J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI technology: fundamentals, practice and modeling vol. 4: Prentice Hall Upper Saddle River, NJ, 2000.
[19]K. Ryogo, Electronic Properties of Metallic Fine Particles. I, J Phys Soc Japan, vol. 17, pp. 975-986, 1962.
[20]L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society, vol. 113, pp. 2826-2833, 1991.
[21]C. Pacholski, A. Kornowski, and H. Weller, Self?Assembly of ZnO: From Nanodots to Nanorods, Angewandte Chemie International Edition, vol. 41, pp. 1188-1191, 2002.
[22]B. Liu and H. C. Zeng, Mesoscale organization of CuO nanoribbons: formation of “dandelions, Journal of the American Chemical Society, vol. 126, pp. 8124-8125, 2004.
[23]L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes, Chemistry of materials, vol. 13, pp. 4395-4398, 2001.
[24]S. Yamabi and H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions, J. Mater. Chem., vol. 12, pp. 3773-3778, 2002.
[25]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Low?Temperature Wafer?Scale Production of ZnO Nanowire Arrays, Angewandte Chemie International Edition, vol. 42, pp. 3031-3034, 2003.
[26]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chemistry of materials, vol. 17, pp. 1001-1006, 2005.
[27]Y. Tak and K. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, The Journal of Physical Chemistry B, vol. 109, pp. 19263-19269, 2005.
[28]W. Zhou, Y. Yu, Y. Duan, A. Asundi, J. Chen, M. Wang, N. Zhan, X. Ji, C. Lu, and X. Zhang, ICEM 2008: International Conference on Experimental Mechanics 2008 (Proceedings Volume), 2009.
[29]G. Aad, E. Abat, J. Abdallah, A. Abdelalim, A. Abdesselam, O. Abdinov, B. Abi, M. Abolins, H. Abramowicz, and E. Acerbi, The ATLAS experiment at the CERN large hadron collider, Journal of Instrumentation, vol. 3, p. S08003, 2008.
[30]K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices, The Journal of Physical Chemistry C, vol. 111, pp. 7218-7223, 2007.
[31]S. O. Kasap, Principles of electronic materials and devices vol. 81: McGraw-Hill New York, 2006.
[32]D. Chen, Y. Yan, E. Westenberg, D. Niebauer, N. Sakaitani, S. R. Chaudhuri, Y. Sato, and M. Takamatsu, Development of anti-reflection (AR) coating on plastic panels for display applications, Journal of Sol-Gel Science and Technology, vol. 19, pp. 77-82, 2000.
[33]李正中, 薄膜光學與鍍膜技術: 藝軒, 2006.
[34]K. Sogo, M. Nakajima, H. Kawata, and Y. Hirai, Reproduction of fine structures by nanocasting lithography, Microelectronic engineering, vol. 84, pp. 909-911, 2007.
[35]B. G. Prevo, Y. Hwang, and O. D. Velev, Convective assembly of antireflective silica coatings with controlled thickness and refractive index, Chemistry of materials, vol. 17, pp. 3642-3651, 2005.
[36]S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Nanophase-separated polymer films as high-performance antireflection coatings, Science, vol. 283, pp. 520-522, 1999.
[37]J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers, Nature materials, vol. 1, pp. 59-63, 2002.
[38]K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. Wassermann, Reflection properties of nanostructure-arrayed silicon surfaces, Nanotechnology, vol. 11, p. 161, 2000.
[39]Y. Chang, G. Mei, T. Chang, T. Wang, D. Lin, and C. Lee, Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects, Nanotechnology, vol. 18, p. 285303, 2007.
[40]W. Lu, C. Wang, W. Yue, and L. Chen, Si/PEDOT: PSS core/shell nanowire arrays for efficient hybrid solar cells, Nanoscale, vol. 3, pp. 3631-3634, 2011.
[41]C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. J. Yang, and Y. F. Chen, Efficient Light Harvesting by well-aligned In2O3 nanopushpins as antireflection layer on Si solar cells, The Journal of Physical Chemistry C, 2011.
[42]H. Chen, C. Lin, H. Wang, M. Tsai, P. Yu, and H. Kuo, Enhanced Conversion Efficiency for c-Si Solar Cell via Photon Down-Conversion and Antireflection of CdS Quantum Dots, 2011.
[43]S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, Hybrid Silicon Nanocone? Polymer Solar Cells, Nano letters, 2012.
[44]S. H. Baek, B. Y. Noh, J. K. Shin, and J. H. Kim, Optical and photovoltaic properties of silicon wire solar cells with controlled ZnO nanorods antireflection coating, Journal of Materials Science, pp. 1-8, 2012.
[45]Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index, Applied Physics Letters, vol. 89, pp. 241119-241119-3, 2006.
[46]P. K. H. Ho, D. Stephen, R. H. Friend, and N. Tessler, All-polymer optoelectronic devices, Science, vol. 285, p. 233, 1999.
[47]H. Alizadeh, B. Bahardoust, A. Gougam, N. P. Kherani, and S. Zukotynski, Evaporated erbium oxide as an antireflective layer for C-Si solar cells, 2009, p. 74090X.
[48]Y. Liu, Z. Lin, K. S. Moon, and C. Wong, Novel ZnO nanowires/silicon hierarchical structures for superhydrophobic, low reflection, and high efficiency solar cells, 2011, pp. 2114-2118.
[49]J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires, Opt. Express, vol. 18, pp. A286-A292, 2010.
[50]S. L. Diedenhofen, R. E. Algra, E. P. A. M. Bakkers, and J. G. Rivas, Mimicking moth's eyes for photovoltaic applications with tapered GaP nanorods, 2010, p. 77720M.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文