跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡邵喻
研究生(外文):Shao-YuHu
論文名稱:電化學分析應用於半導體銅金屬化與銅化合物薄膜太陽能電池電沈積之探討
論文名稱(外文):Investigation of electrochemical analyses applications on electrodeposition of semiconductor Cu metallization and thin film solar cell of Cu compounds
指導教授:李文熙
指導教授(外文):Wen-Hsi Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:208
中文關鍵詞:電化學銅電鍍添加劑太陽能電池
外文關鍵詞:ElectrochemicalCu electrodepositionAdditiveSolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用電化學分析方法來研究半導體製程銅金屬化以及銅化合物薄膜太陽能電池吸收層的電沈積,藉此研究電沈積的機制來改善製程條件。由於電沈積優異的填孔能力以及高生產量,使其很有潛力成為成長金屬與半導體薄膜的方法,由於適合大面積生產以及無真空環境的需求讓他可以實現低成本的量產,但是要將其應用在先進的薄膜製程上有許多挑戰。
銅已經被廣泛應用在製造超大型積體電路的金屬導線,而由於在雙大馬士革結構中優秀的填洞能力以及高速的沈積效率使得電沈積成為製作銅金屬導線的主要工具,為了提升大馬士格法的填洞能力,需要使用許多添加劑來達到超級填充(superfilling)的高性能, 因此添加劑的行為探討是很重要的課題,添加劑裂解行為造成化學機械研磨後的缺陷數增加也在文中被探討。一些濕式接觸導通的電鍍機台需要透過反電鍍的步驟來維持接觸點的導電能力,然而電鍍液的組成對此步驟的效率有很大的影響,本文中利用各種電化學分析如動態極化法、循環伏安法、線性掃瞄伏安法、電化學交流組抗分析作為主要的研究工具來探討電鍍溶液的成分。
電沈積也是沈積複和材質的主要技術,他相對有高真空需求的技術來說有極佳的生產優勢,因此電沈積被應用於發展太陽能光電,二硒化銅銦(CIS)在薄膜太陽應用上頗受矚目,單步驟電沈積是生產CIS薄膜很有潛力的技術,但是三元素的電鍍液組成不易控制,電位的影響限制了各成分的濃度比例,線性掃瞄伏安法是用來研究銅銦硒競爭以及添加劑效用的重要方法,在傳統的方式,溶液濃度被相對的電壓控制來達到特定原子比例的CIS薄膜,而脈衝電鍍提供一種調整CIS薄膜原子比例的方式且可進一步提升薄膜品質。本論文用電化學分析的手法研究各種電鍍參數的機制並且可作為改善製程參數的索引。

In this thesis, electrochemical analyses were used to investigate the mechanism of electrodeposition process of semiconductor Cu metallization and thin film solar cell of Cu compounds. Electrodeposition is a promising method for forming metal and semiconductor thin films due to its excellent gap-filling capacity and high throughput. Low cost mass production can be achieved because of large area plating under non-vacuum circumstances. However, there are several challenges of applying electrodeposition to advanced thin film production.
Copper (Cu) has been used as the interconnection metal in the manufacturing of ultra-large-scale integrated devices (ULSI). Electroplating has been employed to form fine Cu interconnects due to its excellent gap-fill capability and high deposition rate for dual-damascene structures. In order to fill up the damascene structure, many additives are used to improve the performance of superfilling. The mechanisms of the additives are popular topics. The byproducts of additives which cause Cu defects after a chemical-mechanical-polishing (CMP) process were also investigate. Some plating devices, which use wetting-type wafer contact, require a deplating process to maintain the conductivity of the contact. The compositions of the plating solutions affect the deplating speed of the contact. Electrochemical analyses, such as potentiodynamic (PD) polarization, cyclic-voltammetry stripping (CVS), linear scan voltammetry (LSV) and electrochemistry impedance spectroscopy (EIS), are the major tools to investigate the composition of plating electrolytes.
Electrodeposition is a major technology to deposit complex metallic layers. It is scalable at low cost as compared to technologies requiring high vacuum. Therefore, electrodeposition has been developed for the applications of photovoltaics. CuInSe2 (CIS) has been spotlighted for its applications in thin film solar cells. Single step electrodeposition is the most promising electrochemical technique to produce the CIS film for solar cell applications. However, the composition of the CIS film is hard to control in a ternary solution. The variation of electrolyte concentrations is restricted for single potential electrodeposition. LSV is an important method to investigate the influences of additives and the competitions of the three Cu/In/Se. In the conventional deposition, the concentrations of electrolytes are restricted due to the correspondent plating potential of each ion to achieve a specific atomic ratio of the CIS film. A pulsed electrodeposition was used in the CIS deposition to improve the film quality and adjust the atomic ratio of the CIS film. Electrochemical analysis is an important tool to investigate the mechanism of electrodeposition process. It is also an index to improve the plating parameter.
摘要 I
Abstract III
致謝 V
Content VI
Table Captions X
Figures Captions XII
Chapter 1 Introduction 1
1-1 Background and Motivations 1
1-1-1 Electrochemistry and Electrodeposition 1
1-1-2 Introduction and Development of Cu Metallization 3
1-1-3 Introduction of Thin Film Solar Cell of Cu Compounds Absorber 19
1-1-4 Research Motivations 25
1-2 Overview of Thesis 27
Chapter 2 Principle and Analysis Technology 28
2-1 Electrochemistry Principle 28
2-1-1 Electrochemical System 28
2-1-2 Electrocatalysis 32
2-2 Potentiodynamic Sweep Method 36
2-2-1 Linear Sweep Voltammetry (LSV) 36
2-2-2 Cyclic Voltammetry (CV) 39
2-3 Electrochemical Impedance Spectroscopy (EIS) 44
2-3-1 Electrical Circuit Elements 44
2-3-2 Serial and Parallel Combinations of Circuit Elements 46
2-3-3 Physical Electrochemistry and Equivalent Circuit Elements 48
2-3-4 Common Equivalent Circuit Models 57
2-3-5 Extracting Model Parameters from Data 58
2-4 Thin film analysis technology 62
2-4-1 Four point probes 62
2-4-2 Scanning electron microscope (SEM) 63
2-4-3 Energy-dispersive X-ray spectroscopy (EDS) 65
2-4-4 X-ray Diffraction 66
2-4-5 Raman spectroscopy 68
Chapter 3 Electrochemical application on Cu metallization of VLSI process 70
3-1 Investigation of additives effect on electrochemical analyses 70
3-2 Effect of Auxiliary Electrode 77
3-2-1 Introduction 77
3-2-2 Experimental details 79
3-2-3 Result and disscusion 81
3-3 Investigation of Cu De-plating Behavior on Pt contact 89
3-3-1 Introduction 89
3-3-2 Experimental details 91
3-3-3 Result and disscusion 93
3-4 Influence of electrolyte composition on deplating behavior 106
3-4-1 Introduction 106
3-4-2 Experimental details 108
3-4-3 Result and disscusion 109
3-5 Conclusion 120
Chapter 4 Electrochemical application on Cu compounds absorber of solar cell 122
4-1 Incestigation of elements Competition in plating electrolyte 122
4-2 Synthesize CIS from Binary Cu11In9 Precursors 125
4-2-1 Introduction 125
4-2-2 Experimental details 127
4-2-3 Results and discussion 130
4-3 Synthesize CIS from Binary Compound Precursors 142
4-3-1 Introduction 142
4-3-2 Experimental 144
4-3-3 Result and disscusion 146
4-4 Investigation of pulse effect on CIS electrodeposition 158
4-4-1 Introduction 158
4-4-2 Experimental 161
4-4-3 Results and disscusion 163
4-5 EIS analysis on Cu-compounds electrodeposition 172
4-5-1 Introduction 172
4-5-2 Experimental 174
4-5-3 Results and disscusion 175
4-6 Characterization of Cu2ZnSnSe4 Electrodeposition 184
4-6-1 Introduction 184
4-6-2 Experimental 185
4-6-3 Results and Discussion 186
4-7 Conclusion 192
Chapter 5 Conclusions and Future Works 194
5-1 Conclusions 194
5-2 Future Works 197
Publication list 198
Reference 201
自 述 209
[1]胡啟章, 電化學原理與方法, 1st ed. , 台北, 五南圖書, (2002).
[2]M. Paunovic, and M. Schlesinger, Fundamentals of electrochemical deposition, 2nd ed, New Jersey, Wiley, (2006).
[3]邱秋燕, 廖曰淳, 楊慕震, 黃渼雯, and 羅一玲, 工業材料雜誌, 264, (2008).
[4]S. P. Jeng, R. H. Havemann, and M. C. Chang, Mater. Res. Soc. Symp. Proc, 337, (1994).
[5]J. M. Steigerwald, P. Shyam, M. Gutmann, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, New York, Wiley, (1997).
[6]M. Quirk, and J. Serda, Semiconductor Manufacturing Technology, Columbus, Prentice Hall, (2001).
[7]H. Xiao, Introduction to Semiconductor Manufacturing Technology, Columbus, Prentice Hall, (2000).
[8]M. T. Bohr, IEDM, (1995)
[9]S. M. Sze, Physics of Semiconductor Devices, New York, John Wiley & Son, (1981).
[10]J. Li, T. E. Seidel, and J. W. Mayer, MRS bulletin, XIX No. 8, 15, (1994).
[11]J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, J. Electrochem. Soc., 133, 1242, (1986).
[12]ITRS Roadmap, (2007).
[13]B. J. Howard, and Ch. Steinbruchel, 59, 914, (1991).
[14]C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff, and J. E. Cronin, Proc. IEEE VMIC, 144, (1997).
[15]D. Edelstein, Technical Digest, IEEE International Electron Devices Meeting, (1997)
[16]S. Venkatesan, International Electron Devices Meeting, (1997)
[17]P. C. Andricacos, Interface, 8, 32, (1999).
[18]F. C. Walsh, Trans. Inst. Metal Finish., 70, 50, (1992).
[19]G. D. Wilcox, and D. R. Gabe, Trans. Inst. Metal Finish., 70, 100, (1992).
[20]K. M. Takahashi, and M. E. Gross, J. Electrochem. Soc., 146, 4499, (1999).
[21]Adolf Goetzberger, and Christopher Hebling, Solar Energy Materials & Solar Cells, 62, 1, (2000).
[22]L. Kaupmees, M. Altosaar, O. olubujeva, and E. Mellikov, Thin Solid Films, 515, 5891, (2007).
[23]R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, and U. Rqhle, Thin Solid Films, 509, 480, (2005).
[24]J. Bard, and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed, New York, John Wiley & Sons, (2001).
[25]D. K. Goosser, Cyclic Voltammetry, Simulation and Analysis of Reaction Mecheisms, New York, VCH Publishers, (1993).
[26]M. A. Glimartin, and J. P. Hart, J. P. Analyst 120, 1029, (1995).
[27]R. W. Murrary, Molecular Design of Electrode Surfaces, New York, John Wiley & Sons, (1992).
[28]John McGrath, Chris Davis, and Jim McGrath, Journal of Materials Processing Technology 132, 16, (2003).
[29]M. Stern, and A. L. Geary, J. Electrochem. Soc., 104, 56, (1957).
[30]M. Stern, Corrosion, 14, 61, (1958).
[31]R. S. Nicholson, and I. Shain, Anal. Chem., 32, 706, (1964).
[32]http://en.wikipedia.org/wiki/Cyclic_voltammetry
[33]R. Haak, C. Ogden, and D. M. Tench, Plating & Surface Finishing, 68, 52, (1981).
[34]P. Bratin, Proceeding of AES Analytical Meeting Symposium, Chicago, (1985)
[35]P. Bratin, G. Chalyt, A. Kogan, M. Pavlov, and J. Perpich, Semiconductor Fabtech, 12th Edition, (2000).
[36]W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Wisconsin, Pair O Docs, (1994).
[37]R. Srinivasan, J. C. Murphy, C. B. Schroebel, and R. S. Lillard, Materials Performance, 14, (1991).
[38]D. C. Silverman, Corrosion, 45, 824, (1989).
[39]S. J. Downey, and O. F. Devereux, Corrosion, 45, 675, (1989).
[40]J. Bard, and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, (2000).
[41]http://www.consultrsr.com/resources/eis/warburg2.htm
[42]S. R. Taylor, and E. Gileadi, Corrosion, 664, (1995).
[43]M. E. Orazem, P. Shukla, and M. A. Membrino, Electrochim. Acta, 47, 2027, (2002).
[44]E. Barsoukov, and J. R. Macdonald, Impedance Spectroscopy, New Jersey, John Wiley & Sons, (2005).
[45]H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, 45, 867, (2003).
[46]“Corrections for Potentiostat Response, Technical Note 201, Princeton Applied Research.
[47]R. S. Rodgers, and W. J. Eggers, 183rd Meeting of the Electrochemistry Society, Honolulu, HI, (1993)
[48]R. S. Rodgers, 2nd International Symposium on Electrochemical Impedance Spectroscopy, Santa Barbara, CA, (1992)
[49]M. Kending, and F. Mansfeld, Corrosion, 39, (1983).
[50]J. R. Macdonald, J. Electroanal. Chem., 223, 25, (1987).
[51]Bjorck, Numerical methods for least squares problems, SIAM, Philadelphia, (1996)
[52]Joseph Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis, Springer, (2003).
[53]B.E. Warren, X-ray Diffraction, General Publishing Company, (1990).
[54]B.D. Cullity, Elements of X-ray Diffraction,2nd Ed, Addison-Wesley, (1978).
[55]D. Keith Bowe, and Brian K. Tanner, High Resolution X-ray Diffractometry and Topography, Taylor & Francis, (1998).
[56]D. J. Gardiner, Practical Raman spectroscopy, Springer-Verlag, (1989).
[57]John R. Ferraro, Kazuo Nakamoto, and Chris W. Brown, Introductory Raman Spectroscopy, Second Edition, Academic Press, (2002).
[58]K. Kondo, T. Matsumoto, and K. Watanabe, J. Electrochem. Soc., 151, C250, (2004).
[59]T. O. Drews, J. C. Ganley, and R. C. Alkire, J. Electrochem. Soc., 150, C325, (2003).
[60]S. K. Kim, D. Josell, and T. P. Moffat, J. Electrochem. Soc., 153, C616, (2006).
[61]K. W. Chen, Y. L. Wang, L. Chang, S. C. Chang, F. Y. L, and S. H. Lin, Electrochem. Solid-State Lett. , 7, G238, (2004).
[62]Beverina, H. Bernard, J. Palleau, J. Torres, and F. Tardif, Electrochem. Solid-State Lett., 3, 156, (2000).
[63]Y. Homma, S. Kondo, N. Sakuma, K. Hinode, J. Noguchi, N. Ohashi, H. Yamaguchi, and N. Owada, 147, 1193, (2000).
[64]T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, J. Electrochem. Soc., 147, 4524, (2000).
[65]D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, Physical Review Letters, 87, 016102, (2001).
[66]T. P. Moffat, B. Baker, D. Wheeler, and D. Josell, Electrochem. Solid-State Lett., 6, C59, (2003).
[67]M. Tan, and J. N. Harb, J. Electrochem. Soc., 150, C244, (2003).
[68]Frank, and A. J. Bard, J. Electrochem. Soc., 150, C244, (2003).
[69]J. J. Kelly, and A. C. West, J. Electrochem. Soc., 145, 3477, (1998).
[70]J. M. Shieh, S. C. Chang, B. T. Dai, and M. S. Feng, Jpn. J. Appl. Phys., 41, 6347, (2002).
[71]K. H. Dietz, Circuitree Feb., 22, (2000).
[72]S. Kondo, N. Sakuma, Y. Homma, and N. Ohashi, Jpn. J. Appl. Phys., 39, 6216, (2000).
[73]P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, IBM Journal of Research and Development, 42, (1998).
[74]A. Duboust, S. S. Chang, L. Y. Chen, Y. Wang, S. Neo, L. Sun, and F. Q. Liu, U.S. Pat., 6, 776, (2004).
[75]J.M. Lee, H. McCrabb, E. J. Taylor, and R. Carpio, J. Electrochem. Soc., 153, C265, (2006).
[76]C. W. Tobias, and R. Wijsman, ibid, 100, 459, (1953).
[77]V. G. Fomichev, Soviet Electrochemistry, 4, 708, (1968).
[78]J. F. D'Amico, M. A. De Angelo, and F. R. McLaman, ibid, 132, 2330, (1985).
[79]M. Matlosz, P. H. Vallotton, A. C. West, and D. Landolt, J. Electrochem. Soc., 139, 752, (1992).
[80]H. Deligianni, J. O. Dukovic, E. G. Walton, R. J. Contolini, J. Reid, and E. Patton, The Electrochemical Society Proceedings Series, Pennington, NJ, (2000)
[81]G. J. Wilson, P. R. McHugh, and K. M. Hanson, U.S. Pat., 6660137 B2, (2003).
[82]J.-M. Lee, J. T. Hachman, J. J. Kelly, and A. C. West, J. Microlithogr. Microfabr. Microsyst., 3, 146, (2004).
[83]S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, J. Electrochem. Soc., 137, 110, (1990).
[84]Y. S. Choi, and T. Kang, J. Electrochem. Soc., 143, 480, (1996).
[85]D. Tench, and J. white, J. Electrochem. Soc., 132, 831, (1985).
[86]B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, T. L. Xiang, and G. N. Chen, J. Electrochem. Soc., 154, D516, (2007).
[87]U. Landau, The Electrochemical Society Meeting, Phoenix, (2000)
[88]M. Matlosz, P. -H. Vallotton, A. C. West, and D. Landolt, Journal of The Electrochemical Society, 139, (1992).
[89]Shao-Yu Hu, Chi-Cheng Hung, Wen-Hsi Lee, Shih-Chieh Chang, Din-Yuen Chan, and Ying-Lang Wang, Thin Solid Films, 517, (2008).
[90]P.M. Vereecken, R.A. Binstead, H. Deligianni, and P.C. Andricacos, IBM Journal of Research and Development, 49, (2005).
[91]S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, Journal of The Electrochemical Society, 137, (1990).
[92]Young-Sik Choi, and Tak Kang, Journal of The Electrochemical Society, 143, (1996).
[93]Shih-Chieh Chang, Ying-Lang Wang, Chi-Cheng Hung, Wen-His Lee, and Gwo-Jen Hwang, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25, (2007).
[94]Dennis Tench, and John White, Journal of The Electrochemical Society, 132, (1985).
[95]Soon Hyung Kang, Yu-Kyung Kim, Don-Soo Choi, and Yung-Eun Sung, Electrochimica Acta, 51, (2006).
[96]Thou-Jen Whang; Mu-Tao Hsieh; Ya-Chun Kao, Applied Surface Science, 257, (2010).
[97]R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufi, and J. R. Sites, Thin Solid Films, 361–362, (2000).
[98]Jo Klaer, Ilka Luck, Axel Boden, Reiner Klenk, Isabel Gavilanes Perez, and Roland Scheer, Thin Solid Films, 431–432, (2003).
[99]D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, and JP Fauvarque, Solar Energy, 77, (2004).
[100]Kai Siemer, Jo Klaer, Ilka Luck, Jürgen Bruns, Reiner Klenk, and Dieter Bräunig, Solar Energy Materials and Solar Cells, 67, (2001).
[101]K. Singh, and R. Tanveer, Solar Energy Materials and Solar Cells, 36, (1995).
[102]FO Adurodija, SK Kim, SD Kim, JS Song, KH Yoon, and BT Ahn, Solar Energy Materials and Solar Cells, 55, (1998).
[103]FO Adurodija, J. Song, SD Kim, SH Kwon, SK Kim, KH Yoon, and BT Ahn, Thin Solid Films, 338, (1999).
[104]FO Adurodija, J. Song, I. O Asia, and KH Yoon, Solar Energy Materials and Solar Cells, 58, (1999).
[105]FO Adurodija, J. Song, KH Yoon, SK Kim, SD Kim, SH Kwon, and BT Ahn, Journal of Materials Science: Materials in Electronics, 9, (1998).
[106]F.O. Adurodija, J. Song, S.D. Kim, S.K. Kim, and K.H. Yoon, Japanese Journal of Applied Physics, 37, (1998).
[107]CH Chung, SD Kim, HJ Kim, FO Adurodija, KH Yoon, and J. Song, Solid state communications, 126, (2003).
[108]TL Chu, S.S. Chu, SC Lin, and J. Yue, Journal of The Electrochemical Society, 131, (1984).
[109]Sang Deok Kim, and Hyeong Joon Kim, Journal of the Korean Physical Society, 35, 403, (1999).
[110]D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, Solar Energy, 77, (2004).
[111]G. Sasikala, S. Moorthy Babu, and R. Dhanasekaran, Materials chemistry and physics, 42, (1995).
[112]G. Hodes, and D. Cahen, solar Cells, 16, (1986).
[113]S. Jost, F. Hergert, R. Hock, J. Schulze, A. Kirbs, M. Purwins, and M. Schmid, Solar Energy Materials and Solar Cells, 91, (2007).
[114]S. Jost, F. Hergert, R. Hock, J. Schulze, A. Kirbs, T. Vofl, and M. Purwins, Solar Energy Materials and Solar Cells, 91, (2007).
[115]Saburo Endo, Yasushi Nagahori, and Shigetaka Nomura, Japanese Journal of Applied Physics, 35.
[116]M. Boumerzoug, and Lê H. Dao, Journal of Materials Science: Materials in Electronics, 1, (1990).
[117]Tadataka Edamura, and Jun'ichiro Muto, Journal of Materials Science: Materials in Electronics, 5, (1994).
[118]T. Edamura, and J. Muto, Journal of Materials Science Letters, 14, (1995).
[119]Fang-yang Liu, Ying LÜ, Zhi-an Zhang, Yan-qing Lai, Jie Li, and Ye-xiang Liu, Transactions of Nonferrous Metals Society of China, 18, (2008).
[120]I. M. Dharmadasa, R. P. Burton, and M. Simmonds, Solar Energy Materials and Solar Cells, 90, (2006).
[121]F. A. Kroger, Journal of The Electrochemical Society, 125, (1978).
[122]K. K. Mishra, and K. Rajeshwar, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 271, (1989).
[123]R. Friedfeld, R. P. Raffaelle, and J. G. Mantovani, Solar Energy Materials and Solar Cells, 58, 375, (1995).
[124]D. Lincot, and J. Vedel, Adv. Mater., 6, 379, (1994).
[125]L. Thouin, S. Massaccesi, S. Sanchez, and J. Vedel, J. Electroanal. Chem., 374, 81, (1994).
[126]J. Vedel, Inst. Phys. Conf. Ser., 152, 265, (1998).
[127]S. Menezes, Mater. Res. Soc. Symp. Proc., 426, 189, (1996).
[128]J.J. Kelly, and A.C. West, Journal of The Electrochemical Society, 145, (1998).
[129]J. D. Reid, and A.P. David, Plating & Surface Finishing, 74, 66, (1987).
[130]C. Gabrielli, P. Mocoteguy, H. Perrot, A. Zdunek, P. Bouard, and M. Haddix, Electrochem. Solid-State Lett., 7, C31, (2004).
[131]J. D. Reid, and A. P. David, J. Electrochem. Soc., 134, 1389, (1987).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top