跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡沐翰
研究生(外文):Mu-HanTsai
論文名稱:基於專用短距離通訊與模型預測控制之主動式防撞系統發展
論文名稱(外文):Development of an Active Collision Avoidance System Based on Dedicated Short Range Communication and Model Predictive Control
指導教授:莊智清莊智清引用關係
指導教授(外文):Jyh-Ching Juang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:專用短距離通訊模型預測控制主動式防撞系統
外文關鍵詞:Dedicated Short Range CommunicationModel Predictive ControlActive Collision Avoidance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在利用模型預測控制與專用短距離通訊發展主動式避撞系統。近年來,由於智慧型車安全系統的蓬勃發展,陸陸續續有人提出針對主動式行車安全議題相關之車輛安全系統。在本文中,首先分別探討適用在車輛運動模型及車輛動態模型相對應的模型預測控制理論;其中,前者的模型適用於低速行駛的車輛,而後者則可用於高動態上有側向滑動的車輛模型。依照模型預測控制上的限制,車輛的避撞路徑規劃及輪胎轉動的大小皆可由最佳化問題求得。此外,本論文亦使用專用短距離通訊發展車輛防撞系統,目的為監測車用行動通訊網路上的廣播訊息,並根據所需資訊進行專門的訊息分享達成即時的車輛避撞。車輛藉由GPS 接收器定出車輛的位置、速度,並利用車間通訊技術使得所有車輛皆可以避免碰撞的發生。最後,討論利用網路模擬器模擬車用行動通訊網路在不同情境下封包的品質,以確保真實環境中通訊對此防撞系統的影響。
The objective of this thesis is to develop an active collision avoidance system by using model predictive control and Dedicated Short Range Communication. In recent years, many researches about active collision avoidance system have been proposed to meet the needs of intelligent transportation systems. In this thesis, the model predictive control theory based on vehicle kinematic model and vehicle dynamic model are investigated, respectively. The former model is suitable for low speed vehicle and the latter one is suitable for high dynamic lateral sliding vehicle model. According to the constraint of model predictive control, the vehicle collision avoidance planning and the tire rotated angle can be obtained by solving an optimization problem. Furthermore, this research also develops a vehicle monitor system based on Dedicated Short Range Communication to collect the necessary information from Vehicular Ad-hoc Network. Vehicle collision system can then achieve real time collision avoidance via data analysis and customized message sharing. By receiving vehicle position and heading from GPS receiver, vehicle-to-vehicle communication technology can prevent the collision occurred. Finally, we can use network simulator to compute quality of service on Vehicular Ad-hoc Network in different situation to ensure the communication effect of the system in real environment.
摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
符號 XIV
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的與動機 1
1.3. 文獻回顧 2
1.4. 主要貢獻 3
1.5. 論文架構 4
第二章 模型預測控制與車輛數學模型介紹 5
2.1. 模型預測控制之架構 5
2.1.1. MPC基本概念與原理 6
2.2. 模型預測控制之未來預測輸出 8
2.3. 控制律探討 10
2.3.1. 閉迴路控制系統: 12
2.4. 模型預測控制之條件限制探討 13
2.4.1. 輸入限制 13
2.4.2. 輸入變動率限制 15
2.4.3. 輸出限制 15
2.4.4. 條件限制 16
2.5. 車輛模型: 17
2.5.1. 車輛運動模型: 17
2.5.2. 車輛運動模型在模型預測控制中應用 21
2.5.3. 車輛動態模型 24
2.5.4. 車輛動態模型在模型預測控制中應用 28
第三章 基於車載網路的主動式防撞系統 32
3.1. 車載資通訊 32
3.2. 車用通訊之技術標準 34
3.2.1. DSRC通訊協定 35
3.2.2. IEEE 802.11a, IEEE 802.11p 37
3.3. 先進安全車輛 38
3.3.1. DSRC資料傳送 41
3.3.2. 車輛碰撞決策 46
3.3.3. 車輛碰撞不確定區間 49
3.3.4. MPC在車輛碰撞決策上之應用 51
3.4. 防撞系統實體介紹 55
第四章 網路模擬器(Network Simulator version-2) 58
4.1. NS2介紹 58
4.2. 車用行動網路環境介紹 58
4.3. 車用行動網路上的路由協定 59
4.3.1. 隨意隨選距離向量路由(AODV) 60
4.3.2. 動態來源路由(DSR) 60
4.4. 模擬環境介紹 60
4.4.1. Tcl主要設定 61
4.4.2. cbrgen與setdest基本操作 63
4.4.3. 網路服務品質(Quality of Service, QoS) 63
4.4.4. 車用行動通訊網路上 MAC及PHY設定 64
第五章 模擬與實驗結果 66
5.1. 基於車輛運動模型在MPC上的模擬 67
5.1.1. 模擬結果 67
5.2. 基於車輛動態模型在MPC上的模擬 72
5.2.1. 模擬結果 72
5.3. DSRC實驗結果 85
5.4. 主動式防撞模擬結果 90
5.5. NS2模擬結果 93
第六章 結論與未來工作 98
6.1. 結論 98
6.2. 未來工作 99
參考文獻 100

[1]A. Bemporad and M. Morari, Robust Model Predictive control: A Survey, Springer, pp. 207-226, 1999.
[2]J. Barraquand and J.-C. Latombe, On Nonholonomic Mobile Robots and Optimal Maneuvering, IEEE International Symposium on Intelligent Control, pp.340-347, 1989.
[3]M. Efatmaneshnik, A. Kealy, A. T. Balaei, and A. G. Dempster, “Information Fusion for Localization Within Vehicular Networks, The Journal of Navigation, Vol. 64, No. 3, pp. 401-416, 2011.
[4] B.S. Gukhool, and S. Cherkaoui , “IEEE 802.11p Modeling in NS-2, IEEE Conference on Local Computer Networks, pp. 622-626, 2008.
[5]J. Guldner, H.-S. Tan, and S. Patwardhan, “Analysis of Automatic Steering Control for Highway Vehicle with Look-Down Lateral Reference Systems, Vehicle Syst. Dynamics, Vol. 26, No. 4, pp. 243–269, 1996.
[6]J. Guldner, V. I. Utkin, and J. Ackermann, “A Sliding Mode Control Approach to Automatic Car Steering, IEEE American Control Conference, Vol. 2, pp. 1969-1973, 1994.
[7]T. D. Gillespie, Fundamentals of Vehicle Dynamics, SAE International, 1992.
[8]C. M. Huang and S.Y. Lin, “An Collision Pre-warning Algorithm Based on V2V Communication, IEEE Ubiquitous Information Technologies and Applications, pp. 1-6, 2009.
[9]C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang, “Verification of On-Line Vehicle Collision Avoidance Warning System Using DSRC, World Academy of Science, Engineering and Technology, Vol. 55, pp. 377-383, 2009.
[10]IEEE P802.11p/D6. Draft Amendment for Wireless Access in Vehicular Environments (WAVE), March 2009.
[11]IEEE 1609.1-2006: IEEE Trial-Use Standard for Wireless Access in Vehicular Environments – (WAVE) Resource Manager.
[12]IEEE 1609.2-2006: IEEE Trial–Use Standard for Wireless Access in Vehicular Environments – Security Service for Applications and Management Messages.
[13]IEEE P1609.3 D1.0, Draft Standard for Wireless Access in Vehicular Environments (WAVE) – Multi-channel Operation, December 2008.
[14]IEEE P1609.4 D1.0, Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation, December 2008.
[15]IEEE 802.11 Working Group, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, June 2007.
[16]R. N. Jazar, Vehicle Dynamics: Theory and Application, NY, Springer, 2008.
[17]F Kühne, W. F. Lages, J. M. G. da S. Jr, “Point Stabilization of Mobile Robots via State-Space Exact Feedback Linearization, Robotics and Compute-Integrated Manufacturing, Vol. 6, No. 5, pp. 353-363, 2000.
[18]F. Kühne, W. F. Lages, J. M. G. da S. Jr, “Model Predictive Control of a Mobile Robot Using Linearization, Proceedings of Mechatronics and Robotics, Vol. 4, 2004.
[19]F. Kühne, W. F. Lages, and J. M. G. da S. Jr., “Mobile Robot Trajectory Tracking Using Model Predictive Control, VII SBAI / II IEEE LARS. São Luís, 2005.
[20]U. Kiencke and L. Nielsen, Automotive Control System for Engine, Driveline, and Vehicle(2nd ed), 2005.
[21]C.-S. Lin, B.-C. Chen, and J.-C. Lin, “Field test and performance improvement in IEEE 802.11p V2R/R2V environments, IEEE International Conference on Communications, pp. 1-5, 2010.
[22]C. F. Lin, Ulsoy, A.G., and David J. LeBlanc, “Vehicle Dynamics and External Disturbance Estimation for Vehicle Path Prediction, IEEE Transactions on Control Systems Technology, Vol. 8, No. 3, pp.508-581, 2000
[23]MathWorks, “Longitudinal Vehicle Dynamics, 1984-2011 The MathWorks. Available: http://www.mathworks.com/help/toolbox/physmod/drive/longitudinalvehicledynamics.html
[24]MathWorks, “A Vehicle Dynamics System, 1994-2011 The MathWorks. Available: http://www.mathworks.com/products/sysid/demos.html?file=/products/demos/shipping/idnlgreydemo11.html
[25]T. Murray, M. Cojocari, and H. Fu, “Measuring the Performance of IEEE 802.11p Using NS-2 Simulator for Vehicular Networks, IEEE International Conference on Electro/Information Technology, pp. 498-503, 2008.
[26]R. Miller and Q. Huang, “An Adaptive Peer-to-Peer Collision Warning System, IEEE Vehicular Technology Conference ,Vol. 1, pp. 317-321, 2002.
[27]J. E. Normey-Rico, J. Go´mez-Ortega, and E. F. Camacho, “A Smith-Predictor-Based Generalised Predictive Controller for Mobile Robot Path-Tracking, Control Engineering Practice, Vol. 7, No. 6, pp. 729-740, 1999.
[28]H. B. Pacejka, Tyre and Vehicle Dynamics, SAE International and Elsevier, 2005.
[29]R. Rajamani, Vehicle Dynamics and Control, Springer, 2006.
[30]G. V. Raffo, G. K. Gomes, and J. E. Normey-Rico, “A Predictive Controller for Autonomous Vehicle Path Tracking, IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, pp. 92-102 , 2009.
[31]R. Rajamani, H. S. Tan, B. K. Law, and W. B. Zhang, “Demonstration of Integrated Longitudinal and Lateral Control for the Operation of Automated Vehicles in Platoons, IEEE Transactions On Control Systems Technology, Vol. 8, No. 4, pp.695-708, 2000.
[32]F. D. Salim, S. W. Loke, A. Rakotonirainy, B. Srinivasan, and S. Krishnaswamy “Collision Pattern Modeling and Real-Time Collision Detection at Road Intersections, IEEE Intelligent Transportation System Conference, pp. 161-166, 2007.
[33] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, 2009.
[34]F. Wang, M. Yang, and R. Yang, “Conflict-Probability-Estimation-Based Overtaking for Intelligent Vehicles, IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 2, pp. 366-370, 2009.
[35]S. Wangmanaopituk, H. Voos, W. Kongprawechnon, “Collaborative Nonlinear Model-Predictive Motion Planning and Control of Mobile Transport Robots for a Highly Flexible Production System, Science Asia, pp. 333-341, 2010.
[36]F. Xie and R. Fierro, “First-State Contractive Model Predictive Control of Nonholonomic Mobile Robots, IEEE American Control Conference, pp. 3494-3499, 2008.
[37]Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-Predictive Active Steering and Obstacle Avoidance for Autonomous Ground Vehicles, Control Engineering Practice ,Vol. 17, No. 7, pp. 741-750, 2009.
[38]柯志亨,計算機網路實驗-以NS2模擬工具實作, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top