跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊育林
研究生(外文):Yu-LinYang
論文名稱:以寬度與波形調變之無線傳能技術提升低輸入功率限制下之能量轉換效率
論文名稱(外文):Using Pulse Width and Pulse Shape Modulation to Enhance Power Conversion Efficiency under Constraint of Low Input Power
指導教授:楊慶隆楊慶隆引用關係
指導教授(外文):Chin-Lung Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:125
中文關鍵詞:無線傳能能量轉換效率脈衝波寬度調變脈衝波形調變工作週期
外文關鍵詞:Wireless Power TransmissionPower Conversion EfficiencyPulse Width ModulationPulse Shape ModulationDuty Cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出嶄新的寬度與波形調變之無線傳能(Wireless Power Transmission, WPT)技術,在無線生醫應用的低輸入功率限制下,以不同工作週期(Duty Cycle)與波形(Pulse Shape)的脈衝波(Pulse Wave)取代傳統連續波(Continuous Wave)進行能量傳輸,可有效提升RF-DC整流電路的輸出電壓(Vout)與能量轉換效率(Power Conversion Efficiency, PCE)。
理論分析採用數值軟體(Matlab)建立二極體與RF-DC倍壓整流電路能量轉換數值模型,預測RF-DC倍壓整流電路的最佳負載、輸出電壓與能量轉換效率,誤差小於10 %,並透過微波電路模擬軟體(Advanced Design System, ADS)模擬寬度調變技術提升RF-DC倍壓整流電路效率的成效。進一步提出波形調變技術,將不同種類的特殊波形有系統地以單一之波形參數建立模型,深入探討不同工作週期與波形對RF-DC倍壓整流電路的影響。由有線量測實驗與發光二極體驅動實驗結果可知,吾人可根據負載之導通電流,先決定最佳工作週期,再選擇最佳波形,可達到節省功率、提升能量轉換效率的最佳效果。
在生醫應用方面,本論文建立一簡化可解析的傳輸通道模型,考慮生醫無線傳輸通道的主要損耗,初步預測於生物組織內接收端天線所接收到的微波能量;並分別建置無線傳能系統與生醫無線傳能系統,進行無線生醫環境實測。在無線環境經不同生物組織厚度量測RF-DC倍壓整流電路在不同工作週期或特殊波形下的輸出電壓與能量轉換效率,無線生醫量測結果與有線量測、無線量測結果相當吻合。而在低平均輸入功率下,能量轉換效率可提升3.5倍,驗證以寬度與波形調變之無線傳能技術提升在生醫應用之低輸入功率限制下的效能優化。
This thesis presents a novel wireless power transmission (WPT) technique by using pulse width and pulse shape modulations under constraint of low input power for biomedical applications. Instead of using continuous wave for WPT, we could enhance the output voltage (Vout) and power conversion efficiency (PCE) of RF-DC rectifier by adjusting duty cycles and pulse shapes.
According to theoretical models of the diode and RF-DC voltage doubler rectifier, we could predict the optimal load, Vout, and PCE by using numerical analysis software (Matlab) within the error of less than 10 %. The PCE improvement of the RF-DC voltage doubler rectifier using the technique of pulse width can be simulated by Advanced Design System (ADS). Furthermore, the technique of pulse shape modulation is proposed. Several different types of waveforms can be systematically modeled with a single shape parameter. The effects of different duty cycles and pulse shapes on the PCE of the RF-DC voltage doubler rectifier are thoroughly investigated. From the experiment results of the wired transmission and the LED loads, we could determine the optimal duty cycle and waveform to achieve the best performance according to the current through the load. Therefore, we would reduce the input power and improve the PCE.
As for the study of biomedical applications, this thesis creates a simple analytical biomedical channel model under the consideration of the main attenuation factors to predict the receiving microwave power from receiving antenna buried inside the biological tissues. The WPT system and biomedical WPT system were established to perform wireless biomedical experiments. The the Vout and PCE using different duty cycles, and waveforms are wirelessly measured through in different thicknesses of biomedical tissus. The wireless biomedical experiment results are closely matched to both the wired and wireless experiment results. The PCE of RF-DC voltage doubler rectifier can be improved 3.5 times under constraint of low input power. The performance of using pulse width and pulse shape modulation WPT is verified to optimize the PCE under constraint of low input power in biomedical applications.
第一章 緒論 1
1.1 無線傳能的研究背景與動機 1
1.2 無線傳能的生醫應用 4
1.3 微波無線傳能系統架構介紹 5
1.4 脈衝波寬度調變與波形調變簡介 9
1.5 生醫環境的傳輸通道模型 11
1.6 論文架構 12
第二章 二極體特性分析與寬度調變技術 14
2.1 二極體能量轉換模型理論分析 14
2.2 二極體參數分析 17
2.3 電路模擬軟體驗證 22
2.4 實作電路驗證 27
2.5 寬度調變技術探討 30
2.6 結論 35
第三章 RF-DC倍壓整流電路分析及驗證 36
3.1 RF-DC倍壓整流電路能量轉換模型 36
3.1.1 簡介 36
3.1.2 數值分析模型及電路模擬軟體驗證 36
3.1.3 實作電路效能驗證 41
3.2 以RF-DC倍壓整流電路驗證寬度調變技術 45
3.2.1 簡介 45
3.2.2 電路模擬軟體驗證 45
3.2.3 實作電路效能驗證 49
3.2.4 發光二極體驅動驗證 55
3.3 積體化RF-DC整流電路分析探討及設計 57
3.3.1 簡介 57
3.3.2 電路設計 58
3.3.3 模擬結果分析 61
3.3.4 量測結果分析 65
3.4 結論 70
第四章 波形調變的分析及驗證 72
4.1 簡介 72
4.2 波形的設計與編輯 73
4.3 波形調變的量測與分析 75
4.3.1 時域量測 75
4.3.2 頻域量測 78
4.4 以RF-DC倍壓整流電路驗證 81
4.4.1 固定波形的峰對峰值 81
4.4.2 固定波形的平均輸入功率 85
4.4.3 固定負載電阻 90
4.5 發光二極體驅動驗證 93
4.6 結論 95
第五章 應用於生醫環境的無線傳能系統與量測結果 97
5.1 簡介 97
5.2 無線傳能系統驗證 97
5.2.1 於無線傳能系統運用寬度調變技術驗證 97
5.2.2 於無線傳能系統運用波形調變技術驗證 102
5.3 應用於生醫環境的無線傳能系統驗證 106
5.3.1 生醫環境的傳輸通道模型建立與分析 106
5.3.2 於生醫無線傳能系統運用寬度調變技術驗證 108
5.3.3 於生醫無線傳能系統運用波形調變技術驗證 113
5.4 結論 116
第六章 結論與未來展望 117
6.1 結論 117
6.1.1 二極體特性分析與寬度調變技術 117
6.1.2 RF-DC倍壓整流電路分析及驗證 118
6.1.3 波形調變的分析及驗證 119
6.1.4 應用於生醫環境的無線傳能系統與量測結果 120
6.2 未來展望 120
6.2.1 寬度調變與波形調變電路 120
6.2.2 天線優化 121
6.2.3 RF-DC整流電路優化 121
參考文獻 122
[1]http://www.wirelesspowerconsortium.com/.
[2]http://it.big5.gog.com.cn/system/2011/07/18/011143886.shtml.
[3]W. C. Brown, The History of Power Transmission by Radio Waves, IEEE Transactions on Microwave Theory and Techniques, vol. 32, pp. 1230-1242, 1984.
[4]A. V. J. Lin, J. Kim, S. W. Ko, W. Wu, F. Ren, S. Jang, S. J. Pearton, Microwave Wireless Power Transmission - A System Perspective, ECS Transactions, vol. 3, No. 5, pp. 127-140, 2006.
[5]http://web.mit.edu/newsoffice/2007/wireless-0607.html.
[6]T. Ishida, I. Awai, and I. Sugiyama, Measurement of resonator parameters for wireless power transmission system, in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), pp. 211-214, 2011.
[7]M. D. Zimmerman, N. Chaimanonart, and D. J. Young, In Vivo RF Powering for Advanced Biological Research, in IEEE Engineering in Medicine and Biology Society 28th Annual International Conference, pp. 2506-2509, 2006.
[8]A. P. Sample, D. A. Meyer, and J. R. Smith, Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer, IEEE Transactions on Industrial Electronics, vol. 58, pp. 544-554, 2011.
[9]H. Zenkner and W. Khan-ngern, High power density and high efficient wireless energy transfer by resonance coupling, in Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 1281-1284, 2010.
[10]E. Y. Chow, C.-L. Yang, A. Chlebowski, W. J. Chappell, and P. P. Irazoqui, Miniature antenna for RF telemetry through ocular tissue, in 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 1309-1312, 2008.
[11]M. Ishiba, J. Ishida, K. Komurasaki, and Y. Arakawa, Wireless power transmission using modulated microwave, in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), pp. 51-54, 2011.
[12]J. O. McSpadden, F. Lu, and C. Kai, Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna, IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 2053-2060, 1998.
[13]K. Nishida, Y. Taniguchi, K. Kawakami, Y. Homma, H. Mizutani, M. Miyazaki, H. Ikematsu, and N. Shinohara, 5.8 GHz high sensitivity rectenna array, in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), pp. 19-22, 2011.
[14]R. Selvakumaran, W. Liu, S. Boon-Hee, M. Luo, and Y. L. Sum, Design of low power Rectenna for wireless power transfer, in TENCON 2009 IEEE Region 10 Conference, pp. 1-5 2009.
[15]E. Y. Chow, C.-L. Yang, O. Yuehui, A. L. Chlebowski, P. P. Irazoqui, and W. J. Chappell, Wireless Powering and the Study of RF Propagation Through Ocular Tissue for Development of Implantable Sensors, IEEE Transactions on Antennas and Propagation, vol. 59, pp. 2379-2387, 2011.
[16]H. Takhedmit, B. Merabet, L. Cirio, B. Allard, F. Costa, C. Vollaire, and O. Picon, A 2.45-GHz low cost and efficient rectenna, in IEEE Antennas and Propagation (EuCAP), pp. 1-5, 2010.
[17]N. Young Chul, C. Cheolung, P. Jun, C. Jong Chan, and K. Moonil, Optimized wireless power transmission circuit for energy transfer, in Telecommunications Energy Conference, pp. 1-3, 2009.
[18]J. O. McSpadden, T. Yoo, and K. Chang, Theoretical and experimental investigation of a rectenna element for microwave power transmission, Microwave Theory and Techniques, IEEE Transactions on, vol. 40, pp. 2359-2366, 1992.
[19]K. Fujimori, K. Tada, Y. Ueda, M. Sanagi, and S. Nogi, Development of high efficiency rectification circuit for mW-class rectenna, in European Microwave Conference, p. 4, 2005.
[20]R. Yu-Jiun and C. Kai, 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 1495-1502, 2006.
[21]Y. Zou, X. Huang, L. Tan, Y. Bai, and J. Zhang, Current Research Situation and Developing Tendency about Wireless Power Transmission, in 2010 International Conference on Electrical and Control Engineering (ICECE), pp. 3507-3511, 2010.
[22]W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D. Weiland, and R. Greenberg, A neuro-stimulus chip with telemetry unit for retinal prosthetic device, IEEE Journal of Solid-State Circuits, vol. 35, pp. 1487-1497, 2000.
[23]UCSF Medical Center, http://www.ucsfhealth.org.
[24]T. W. Yoo and K. Chang, Theoretical and experimental development of 10 and 35 GHz rectennas, IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 1259-1266, 1992.
[25]T. C. Yo, C.-M. Lee, C. H. Luo, and C.-H. Tu, Stacked implantable rectenna for wireless powering the medical implants, in 2007 IEEE Antennas and Propagation Society International Symposium, pp. 3189-3192, 2007.
[26]H. Takhedmit, B. Merabet, L. Cirio, B. Allard, F. Costa, C. Vollaire, and O. Picon, Design of a 2.45 GHz rectenna using a global analysis technique, in 3rd European Conference on Antennas and Propagation, pp. 2321-2325, 2009.
[27]IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz, IEEE Standard C95.1-1999, 1999.
[28]http://www.eetimes.com/discussion/beginner-s-corner/4023833.
[29]羅濬智, 國立成功大學電機所碩士論文“高效率超寬頻脈衝波無線傳能系統,99年7月.
[30]W. Jianqing, Y. Nishikawa, and T. Shibata, Analysis of On-Body Transmission Mechanism and Characteristic Based on an Electromagnetic Field Approach, IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 2464-2470, 2009.
[31]R. W. L. S. Gabriel, and C. Gabriel, The Dielectric Properties of Biological Tissues: III Parametric Models for The Dielectric Spectrum of Tissues, Phys. Med. Biol, vol. 41, pp. 2271-2293, 1996.
[32]HSMS-285x Series, Surface Mount Microwave Schottky Detector Diodes, Data Sheet, Avago technology.
[33]尤宗旗, 國立成功大學電機所博士論文“應用具諧波抑制與圓極化平面整流天線之無線傳充電系統設計,97年6月.
[34]http://www.home.agilent.com.
[35]http://www.allaboutcircuits.com/vol_3/chpt_3/8.html.
[36]J. Zbitou, M. Latrach, and S. Toutain, Hybrid rectenna and monolithic integrated zero-bias microwave rectifier, IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 147-152, 2006.
[37]U. Karthaus and M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7 μW minimum RF input power, IEEE Journal of Solid-State Circuits, vol. 38, pp. 1602-1608, 2003.
[38]Y.-L. Yang, C.-L. Yang, C.-L. Tsai, and C.-S. Lee, Efficiency improvement of the impulsive wireless power transmission through biomedical tissues by varying the duty cycle, in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), pp. 175-178, 2011.
[39]T. Yilmaz, T. Karacolak, and E. Topsakal, Characterization and Testing of a Skin Mimicking Material for Implantable Antennas Operating at ISM Band (2.4 GHz-2.48 GHz), IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 418-420, 2008.
[40]F.-J. Huang, C.-M. Lee, C.-L. Chang, L.-K. Chen, T.-C. Yo, and C.-H. Luo, Rectenna Application of Miniaturized Implantable Antenna Design for Triple-Band Biotelemetry Communication, IEEE Transactions on Antennas and Propagation, vol. 59, pp. 2646-2653, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top