跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張幃富
研究生(外文):Wei-FuChang
論文名稱:紫外光臭氧處理對於超薄金屬氧化物介面緩衝層的影響及其於小分子有機太陽能電池之應用
論文名稱(外文):Effects of UV‐Ozone Treatment on Ultra Thin Metal Oxides Interfacial Layers Used for Small Molecular Organic Photovoltaics
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:有機太陽能電池緩衝層
外文關鍵詞:OPVbuffer layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
位於有機太陽能電池(OPV)電極與主動層之間的介面緩衝層,能調整主動層與電極之間能階以降低介面能障、形成選擇性接面以供特定載子通過並避免其與激子在電極附近複合、確立元件結構方向性、防止電極與有機材料之間物理或化學反應,以及作為光學阻隔層,在提升元件特性上具舉足輕重的地位。
本研究首度以真空熱蒸鍍方式,成長小分子OPV用n型介面緩衝材料ZnO與SnO2於ITO,並於紫外光臭氧(UVO)處理後繼續完成元件。隨著UVO處理時間增加,原先衰減的OPV元件特性獲得大幅改善並超越標準元件, 40 min處理後ZnO (1nm, 3nm)系列元件Voc (+28.6%, +23.8%)、Jsc (+12.2%, +20.2%)以及η (+39.8%, +41.9%)均大幅提升;SnO2 (1nm, 3nm)系列特性則於UVO處理後快速回復並小幅提升,40 min處理後特性為Voc (+0%, +0%) 、Jsc (+26.1%, +11.1%)與η (+4.7%, +2.4%)。
為探討UVO處理對於ZnO和SnO2兩種材料的影響,及其對OPV元件如Voc、Jsc等特性參數影響的方式,本研究亦對此兩種金屬氧化物薄膜進行包含AC2、XPS、AFM、Contact Angle等各式量測與分析,以尋求符合理論與機制的解釋。

Interfacial buffer layers between the electrodes and the active layers in organic photovoltaics (OPV) have played an important role in ways for improving the performance of the devices because of following capabilities:
(1) To modify the energy level and then reduce the energy barrier between the electrodes and the active layers.
(2) To form a selective contact from carriers of one sort and prevent the
exciton quenching near the electrodes.
(3) To determine the polarity of the device.
(4) To prevent chemical or physical reactions between the organic active
layers and the electrodes.
(5) To act as optical spacers.
N-type interfacial materials like ZnO and SnO2 were grown by thermal evaporation method as an interfacial buffer layer for the first time. These ultra thin metal oxide layers are grown on the ITO substrate in advance of UV-Ozone (UVO) treatment. After then the device was formed subsequently and immediately. With the increasing time of UVO treatment, the performance of the devices, which was improved largely, exhibited even better than that of the standard device. Characteristics improvement of the devices using ZnO (1nm, 3nm) are Voc (+28.6%, +23.8%), Jsc (+12.2%, +20.2%), and η (+39.8%, +41.9%) under a 40-min- UVO-treatment. On the other hand, characteristics of devices using SnO2 rose again quickly and showed a little more improved to Voc (+0%, +0%), Jsc (+26.1%, +11.1%), and η (+4.7%, +2.4%) under a 40-min-UVO-treatment.
In order to investigate the effects of UVO treatment on ZnO and SnO2 and their further effects on device characteristics such as Voc and Jsc, a series of measurements like AC2, XPS, AFM, and Contact Angle were carried out. The respective mechanisms responsible for the variation in device characteristics using ZnO and SnO2 as the buffer layer were therefore discussed.

目錄

摘要 I
Abstract II
致謝 III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.2.1有機太陽能電池結構的發展與演進 3
1.2.2介面緩衝層簡介及其文獻回顧 6
1.3研究動機 11
第二章 理論基礎 12
2.1有機太陽能電池的工作原理 12
(a)光子吸收(photon absorption)與激子生成(exciton formation) 13
(b)激子擴散(exciton diffusion) 14
(c)激子分離(exciton dissociation) 15
(d)載子傳遞(carrier transport)與電荷收集(charge collection) 16
2.2各項元件參數及其影響因子 18
2.2.1 Voc 19
2.2.2 Jsc 20
2.2.3 FF、Rs、Rsh與元件等效電路 22
第三章 實驗方法與步驟 25
3.1實驗設備與材料 25
3.1.1真空熱蒸鍍系統 25
3.1.2 UVO簡介 28
3.1.3材料與藥品簡介 29
3.2實驗步驟 30
(a)基板清潔與前處理 30
(b)介面緩衝層蒸鍍 31
(c) UVO處理 31
(d)有機層與電極蒸鍍 31
3.3分析儀器及其原理 33
3.3.1 α-Step 33
3.3.2太陽光模擬器及電性量測工具 34
3.3.3 AC2 36
3.3.4 XPS 37
3.3.5 AFM 38
3.3.6 Contact Angle 39
第四章 結果與討論 41
4.1標準元件 41
4.2不同UVO處理時間對於使用介面緩衝層元件特性的影響 41
4.2.1 ZnO 42
4.2.2 SnO2 47
4.3 UVO處理對介面緩衝層與Voc的影響 52
4.3.1 AC2 52
4.3.2 XPS 54
4.4 UVO處理對介面緩衝層與Jsc的影響 65
4.4.1 AFM 66
4.4.2 Contact Angle 75
第五章 結論與未來展望 80
5.1結論 80
5.2未來展望 84
Reference 85











表目錄

Table1.1 近年OPV介面緩衝層材料(p-type metal oxides)文獻回顧 9
Table1.2 近年OPV介面緩衝層材料(n-type metal oxides)文獻回顧 10
Table3 測定液體的各表面張力組成項 40
Table4.1 標準元件參數 41
Table4.2 不同UVO處理時間對於使用1nm及3nm的ZnO做為陽極介面緩衝層的OPV元件特性之影響 42
Table4.3 不同UVO處理時間對於使用1nm及3nm的SnO2做為陽極介面緩衝層的OPV元件特性之影響 47
Table4.4 AC2功函數量測結果 52
Table4.5 正規化後ZnO和SnO2在O1s鍵結組成峰的峰值及積分強度比 56
Table4.6 正規化後SnO2在Sn3d5/2鍵結組成峰的峰值及積分強度比 62
Table4.7 ITO和成長於其上的ZnO、SnO2表面粗糙度量測結果(AFM) 66
Table4.8 接觸角量測結果 75
Table4.9 表面能計算結果 76
Table4.10 疏水性與親水薄膜特性整理 77
Table5.1 表面粗糙度和表面能的改變對於元件電流的影響整理 81
Table5.2 標準元件與加入不同陽極介面緩衝層的OPV各項參數比較 83








圖目錄

Fig.1.1 Conversion efficiencies of best research solar cells worldwide 2
Fig.1.2 有機太陽能電池主動層結構 3
Fig.1.3 HJ與BHJ在微觀下的D/A介面示意圖 5
Fig.1.4 結合BHJ與Tandem概念的OPV 5
Fig.1.5 以p型材料和n型材料的位置來確立OPV元件結構之方向性 7
Fig.1.6 加入光學阻隔層對於主動層吸收效率的影響 8
Fig.2.1 有機太陽能電池工作原理 12
Fig.2.2 激子能量傳遞機制 14
Fig.2.3 Eex、IPD-EAA對激子分離難易度的影響 15
Fig.2.4 OPV元件特性曲線及各項工作參數定義 18
Fig.2.5 改變Rs與Rsh對太陽能電池元件特性的影響 24
Fig.2.6 太陽能電池等效電路模型 24
Fig.3.1 真空熱蒸鍍系統 27
Fig.3.2 UVO cleaner 28
Fig.3.3 OPV元件示意圖 32
Fig.3.4 OPV元件結構圖 32
Fig.3.5 α-step 33
Fig.3.6.1太陽光譜區段圖 34
Fig.3.6.2 Air Mass的定義 34
Fig.3.7 太陽光模擬器系統外觀 35
Fig.3.8 AC2量測設備 36
Fig.3.9 XPS量測設備 37
Fig.3.10 The MultiMode 8 AFM System 38
Fig.3.11 Contact angle的定義 39
Fig.4.1 ZnO 1nm元件的Jsc和Voc對於不同UVO時間的變化趨勢 44
Fig.4.2 ZnO 1nm元件的FF和η對於不同UVO時間的變化趨勢 44
Fig.4.3 ZnO 3nm元件的Jsc和Voc對於不同UVO時間的變化趨勢 45
Fig.4.4 ZnO 3nm元件的FF和η對於不同UVO時間的變化趨勢 45
Fig.4.5 ZnO 1nm元件的暗電流對於不同UVO時間的變化趨勢 46
Fig.4.6 ZnO 3nm元件的暗電流對於不同UVO時間的變化趨勢 46
Fig.4.7 SnO2 1nm元件的Jsc和Voc對於不同UVO時間的變化趨勢 49
Fig.4.8 SnO2 1nm元件的FF和η對於不同UVO時間的變化趨勢 49
Fig.4.9 SnO2 3nm元件的Jsc和Voc對於不同UVO時間的變化趨勢 50
Fig.4.10 SnO2 3nm元件的FF和η對於不同UVO時間的變化趨勢 50
Fig.4.11 SnO2 1nm元件的暗電流對於不同UVO時間的變化趨勢 51
Fig.4.12 SnO2 3nm元件的暗電流對於不同UVO時間的變化趨勢 51
Fig.4.13 OPV元件能階結構圖 54
Fig.4.14 ZnO薄膜在O1s鍵結軌域強度圖 57
Fig.4.15分離出兩組成後ZnO薄膜w/o UVO在O1s鍵結軌域強度圖 57
Fig.4.16分離出兩組成後ZnO薄膜UVO 40 min在O1s鍵結軌域強度圖 58
Fig.4.17分離出兩組成後ZnO薄膜UVO 50 min在O1s鍵結軌域強度圖 58
Fig.4.18 SnO2薄膜在O1s鍵結軌域強度圖 59
Fig.4.19分離出兩組成後SnO2薄膜w/o UVO在O1s鍵結軌域強度圖 59
Fig.4.20分離出兩組成後SnO2薄膜UVO 40 min在O1s鍵結軌域強度圖 60
Fig.4.21分離出兩組成後SnO2薄膜UVO 50 min在O1s鍵結軌域強度圖 60
Fig.4.22 ZnO薄膜在Zn2p鍵結軌域強度圖 63
Fig.4.23 SnO2薄膜在Sn3d鍵結軌域強度圖 63
Fig.4.24分離出兩組成後SnO2薄膜w/o UVO在Sn3d5/2鍵結軌域強度圖 64
Fig.4.25分離出兩組成後SnO2薄膜 UVO 40 min在Sn3d5/2鍵結軌域強度圖 64
Fig.4.26分離出兩組成後SnO2薄膜 UVO 50 min在Sn3d5/2鍵結軌域強度圖 65
Fig.4.27 ITO的3-D與2-D AFM圖 68
Fig.4.28 ZnO薄膜w/o UVO的3-D與2-D AFM圖 69
Fig.4.29 ZnO薄膜UVO 40 min的3-D與2-D AFM圖 70
Fig.4.30 ZnO薄膜UVO 50 min的3-D與2-D AFM圖 71
Fig.4.31 SnO2薄膜w/o UVO的3-D與2-D AFM圖 72
Fig.4.32 SnO2薄膜UVO 40 min的3-D與2-D AFM圖 73
Fig.4.33 SnO2薄膜UVO 50 min的3-D與2-D AFM圖 74
Fig.4.34 ZnO薄膜表面能趨勢 78
Fig.4.35 ZnO薄膜表面極化比趨勢 78
Fig.4.36 SnO2薄膜表面能趨勢 79
Fig.4.37 SnO2薄膜表面極化比趨勢 79


[1]K. Ghosh, and T. Feng, “Merocyanine Organic Solar-Cells, J. Appl. Phys., 49 [12] 5982-5989 (1978)
[2]G. A. Chamberlain, P. J. Cooney, and S. Dennison, “Photo-Voltaic Properties of Merocyanine Solid-State Photocells, Nature, 289 [5793] 45-47 (1981)
[3]T. Moriizumi, and K. Kudo, “Merocyanine-Dye Photovoltaic Cell on a Plastic Film, Appl. Phys. Lett., 38 I [2] 85-86 (1981)
[4]V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Müllen, B. R. Hsieh, and C. W. Tang, “Dramatic Photoluminescence Quenching of Phenylene Vinylene Oligomer Thin Films upon Submonolayer Ca Deposition, Appl. Phys. Lett., 69 [10] 1492-1494 (1996)
[5]C. W. Tang, “Two-Layer Organic Photovoltaic Cell, Appl. Phys. Lett., 48 [2] 183-185 (1986)
[6]S. Sun and N. S. Sariciftci, eds., Organic Photovoltaics: Mechanisms, Materials and Devices, CRC Press, Boca Raton (FL), USA, Solid-State Organic Photovoltaics: A Review of Molecular and Polymeric Devices (P. A. Lane and Z. H. Kafafi; Chap.4) (2005)
[7]P. Peumans, A. Yakimov, and S.R. Forrest, “Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells, J. Appl. Phys., 93 [7] 3693-3723 (2003)
[8]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A.J. Heeger, “Polymer Photovoltaic Cells : Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270 [5243] 1789-1791 (1995)
[9]J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient Photodiodes from Interpenetrating Polymer Networks, Nature, 376 [6540] 498-500 (1995)
[10] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, “Laminated Fabrication of Polymeric Photovoltaic Diodes, Nature, 395 [6699] 257-260 (1998)
[11] P. Peumans, S. Uchida ,and S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cells Using Small Molecular-Weight Organic Thin Films, Nature, 425 [6954] 158-162 (2003)
[12] P. Sullivan, S. Heutz, S. M. Schultes, and T. S. Jones, “Influence of Codeposition on the Performance of CuPc-C60 Heterojunction Photovoltaic Devices, Appl. Phys. Lett., 84 [7], 1210-1212 (2004)
[13] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, “Organic Small Molecule Solar Cells with a Homogeneously Mixed Copper Phthalocyanine: C60 Active Layer, Appl. Phys. Lett., 84 [21] 4218-4220 (2004)
[14] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell, Adv. Mater., 17 [1] 66-71 (2005)
[15] S. R. Forrest, “The Limits to Organic Photovoltaic Cell Efficiency, MRS Bulletin, 30 [1] 28-32(2005)
[16] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric Tandem Organic Photovoltaic Cells with Hybrid Planar-Mixed Molecular Heterojunctions, Appl. Phys. Lett., 85 [23], 5757-5759 (2004)
[17] R. Steim, F. R. Koglera, and C. J. Brabec, “Interface Materials for Organic Solar Cells, J. Mater. Chem., 20 [13] 2499–2512 (2010)
[18] H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface Engineering for Organic Electronics, Adv. Funct. Mater., 20 [9], 1371-1388 (2010)
[19] J. H. Park, T.-W. Lee, B.-D. Chin, D. H. Wang, and O O. Park, “Roles of Interlayers in Efficient Organic Photovoltaic Devices, Macromol. Rapid Commun., 31 [24] 2095–2108 (2010)
[20] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode Dependence of the Open-Circuit voltage of Polymer:Fullerene Bulk Heterojunction Solar Cells, J. Appl. Phys., 94 [10] 6849-6854 (2003)
[21] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells, Adv. Funct. Mater., 11 [5] 374-380 (2001)
[22] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10% Energy-Conversion Efficiency, Adv. Mater., 18 [6] 789-794 (2006)
[23] J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.-Y. Kim, and K. Cho, “Control of the Electrode Work Function and Active Layer Morphology via Surface Modification of Indium Tin Oxide for High Efficiency Organic Photovoltaics, Appl. Phys. Lett., 91 [11] 112111 (2007)
[24] C.-Y. Li, T.-C. Wen, and T.-F. Guo, “Sulfonated Poly(diphenylamine) as a Novel Hole-Collecting Layer in Polymer Photovoltaic Cells, J. Mater. Chem., 18 [37] 4478-4482 (2008)
[25] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer bulk-heterojunction solar cells , Proc. Natl. Acad. Sci. U.S.A., 105 [8] 2783–2787 (2008)
[26] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, “Air-Stable Polymer Electronic Devices, Adv. Mater., 19 [18], 2445-2449 (2007)
[27] D. H. Wang, S. H. Im, H. K. Lee, J. H. Park, O O. Park, “Enhanced High-Temperature Long-Term Stability of Polymer Solar Cells with a Thermally Stable TiOx Interlayer, J. Phys. Chem. C, 113 [39] 17268-17273 (2009)
[28] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulović, and S. R. Forrest, “Chemistry and Electronic Properties of Metal-Organic Semiconductor Interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA, Phys. Rev. B: Condens. Matter., 54 [19] 13748-13758 (1996)
[29] P. Peumans, V. Bulović, and S. R. Forrest, “Efficient photon Harvesting at High Optical Intensities in Ultrathin Organic Double-Heterostructure Photovoltaic Diodes, Appl. Phys. Lett., 76 [19] 2650 (2000)
[30] M. Ichikawa, C. Shimizu, T. Koyama, and Y. Taniguchi, “Improvement of Photovoltaic Performances of Organic Thin-Film Solar Cells by Fast Electron Mobility Oxadiazole as an Exciton Blocking Layer Material, Phys. Stat. Sol., 205 [5], 1222-1225 (2008)
[31] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology Evolution via Self-Organization and Lateral and Vertical Diffusion in Polymer:Fullerene Solar Cell Blends, Nat. Mater., 7 158-164 (2008)
[32] Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu and Y. Yang, “Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells, Adv. Funct. Mater., 19 [8] 1227-1234 (2009)
[33] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, “Highly Efficient Inverted Organic Photovoltaics Using Solution Based Titanium Oxide as Electron Selective Contact, Appl. Phys. Lett., 89 [23] 233517 (2006)
[34] A. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, and P. J. M. Smulders, J. M. Klapwijk and G. Hadziioannou, “Indium Contamination from the Indium-Tin-Oxide Electrode in Polymer Light‐Emitting Diodes, Appl. Phys. Lett., 69[12] 1764-1766 (1996)
[35] S. T. Lee, Z. Q. Gao, and L. S. Hung, “Optical Absorption Edge Characteristics of Cubic Boron Nitride Thin Films, Appl. Phys. Lett., 75 [1] 10-12 (1999)
[36] K. Suemori, M. Yokoyama and M. Hiramoto, “Electrical Shorting of Organic Photovoltaic Films Resulting from Metal Migration, J. Appl. Phys., 99 [3] 036109 (2006)
[37] M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumbles and D. S. Ginley, “Pathways for the Degradation of Organic Photovoltaic P3HT:PCBM Based Devices, Sol. Energy Mater. Sol. Cells, 92 [7] 746-752 (2008)
[38] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the Interface between Indium-Tin-Oxide and Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) in Polymer Light-Emitting Diodes, Appl. Phys. Lett., 77 [14] 2255-2257 (2000)
[39] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking Reactions between Indium-Tin Oxide and Poly(3,4-ethylene dioxythiophene):Poly(styrene sulphonate) with a Self-Assembly Monolayer, Appl. Phys. Lett., 80 [15] 2788-2790 (2002)
[40] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater., 18 [5] 572-576 (2006)
[41] A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee and A. J. Heeger, “Titanium Suboxide as an Optical Spacer in Polymer Solar Cells, Appl. Phys. Lett., 95 [1] 013302 (2009)
[42] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, “Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%, Nat. Photonics, 3 297-302 (2009)
[43] V. Shrotriya, G. Li, Y. Yao, C.W. Chu, and Y. Yang, “Transition Metal Oxides as the Buffer Layer for Polymer Photovoltaic Cells, Appl. Phys. Lett., 88 [7] 073508 (2006)
[44] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An Inverted Organic Solar Cell Employing a Sol-Gel Derived ZnO Electron Selective Layer and Thermal Evaporated MoO3 Hole Selective Layer, Appl. Phys. Lett., 93 [22] 221107 (2008)
[45] D. Y. Kim, G. Sarasqueta, and F. So , “SnPc: C60 Bulk Heterojunction Organic Photovoltaic Cells with MoO3 Interlayer, Sol. Energy Mater. Sol. Cells, 93 [8] 1452-1456 (2009)
[46] I. Hancox, P. Sullivan, K.V. Chauhan, N. Beaumont, L.A. Rochford, R.A. Hatton, and T.S. Jones, “The Effect of a MoOx Hole-Extracting Layer on the Performance of Organic Photovoltaic Cells Based on Small Molecule Planar Heterojunctions, Org. Electron., 11 [12] 2019-2025 (2010)
[47] H. Kageyama, H. Kajii, Y. Ohmori, and Y. Shirota, “MoO3 as a Cathode Buffer Layer Material for the Improvement of Planar pn-Heterojunction Organic Solar Cell Performance, Appl. Phys. Express, 4 [3] 032301 (2011)
[48] M.Y. Chan, C.S. Lee, S.L. Lai, M.K. Fung, F.L. Wong, H.Y. Sun, K.M. Lau, and S.T. Lee, “Efficient Organic Photovoltaic Devices Using a Combination of Exciton Blocking Layer and Anodic Buffer Layer, J. Appl. Phys., 100 [9] 094506 (2006)
[49] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of Tungsten Oxide in Inverted Polymer Solar Cells, Appl. Phys. Lett., 94 [4] 043311 (2009)
[50] S. Han, W. S. Shin, M. Seo, D. Gupta, S.-J. Moon, and S. Yoo, “Improving Performance of Organic Solar Cells Using Amorphous Tungsten Oxides as an Interfacial Buffer Layer on Transparent Anodes, Org. Electron., 10 [5] 791-797 (2009)
[51] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient Inverted Polymer Solar Cells, Appl. Phys. Lett., 88 [25] 253503 (2006)
[52] J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, C.-F. Lin, “Solution-Processed Vanadium Oxide as an Anode Interlayer for Inverted Polymer Solar Cells Hybridized with ZnO Nanorods, Org. Electron., 10 [1] 1060-1065 (2009)
[53] L. Shen, X.-D. Zhang, W.-B. Guo, C.-X. Liu, W. Dong, and S.-P. Ruan, “Performance Improvement of Inverted Polymer Solar Cells Using V2O5 as an Anode Buffer Layer, Materials Science Forum, 663-665 865-868 (2011)
[54] S.-Y. Park, H.-R. Kim, Y.-J. Kang, D.-H. Kim, and J.-W. Kang, “Organic Solar Cells Employing Magnetron Sputtered p-Type Nickel Oxide Thin Film as the Anode Buffer Layer, Sol. Energy Mater. Sol. Cells, 94 [12] 2332-2336 (2010)
[55] K.X. Steirer, P.F. Ndione, N.E. Widjonarko, M.T. Lloyd, J. Meyer, E.L. Ratcliff, A. Kahn, N.R. Armstrong, C.J. Curtis, D.S. Ginley, J.J. Berry, and D.C. Olson, “Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers, Adv. Energy Mater., 1 [5] 813-820 (2011)
[56] W. Yu, L. Shen , S. Ruan, F. Meng, J. Wang, E. Zhang, and W. Chen, “Performance Improvement of Inverted Polymer Solar Cells Thermally Evaporating Nickel Oxide as an Anode Buffer Layer, Sol. Energy Mater. Sol. Cells, 98 [1] 212-215 (2012)
[57] M.-Y. Lin, C.-Y. Lee, S.-C. Shiu, I.-J. Wang, J.-Y. Sun, W.-H. Wu, Y.-H. Lin, J.-S. Huang, and C.-F. Lin, “Sol-el processed CuOx ThinFilm as an Anode Interlayer for Inverted Polymer Solar Cells, Org. Electron., 11 [11] 1828-1834 (2010)
[58] T. Shirakawa, T. Umeda, Y. Hashimoto, A. Fujii, and K. Yoshino, “Effect of ZnO Layer on Characteristics of Conducting Polymer/C60 Photovoltaic Cell, J. Phys. D: Appl. Phys., 37 [6] 847-850 (2004)
[59] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted Bulk-Heterojunction Organic Photovoltaic Device Using a Solution Derived ZnO Underlay, Appl. Phys. Lett., 89 [14] 143517 (2006)
[60] N. Sekine, C.H. Chou, W.L. Kwan, Y. Yang, “ZnO Nano-Ridge Structure and its Application in Inverted Polymer Solar Cell, Org. Electron., 10 [8] 1473-1477 (2009)
[61] Y. Lare, M. Banéto, L. Cattin, M. Morsli, K. Jondo, K. Napo, and J. C. Bernède, “Effect of a Zinc Oxide, at the Cathode Interface, on the Efficiency of Inverted Organic Photovoltaic Cells Based on the CuPc/C60 Couple, J. Mater. Sci.: Mater. Electron., 22 [4] 365-370 (2011)
[62] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “High Efficiency Double Heterojunction Polymer Photovoltaic Cells Using Highly Ordered TiO2 Nanotube Arrays, Appl. Phys. Lett., 91 [15] 152111 (2007)
[63] M.-H. Park, J.-H. Li, A. Kumar, G. Li, and Y. Yang, “Doping of the Metal Oxide Nanostructure and its Influence in Organic Electronics, Adv. Funct. Mater., 19 [8] 1241-1246 (2009)
[64] K.-S. Lee, J.-W. Lim, H.-K. Kim, T. L. Alford, and G. E. Jabbour, “Transparent Conductive Electrodes of Mixed TiO2-x -Indium Tin Oxide for Organic Photovoltaics, Appl. Phys. Lett., 100 [21] 213302 (2012)
[65] A. Moliton and J.-M. Nunzi, “How to Model the Behaviour of Organic Photovoltaic cells, Polym. Int., 55 [6] 583-600 (2006)
[66] J. Nelson, “Organic Photovoltaic Films, Current Opinion in Solid State and Materials Science, 6 [1] 87-95 (2002)
[67] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “ Device Physics of Polymer: Fullerene BulkHeterojunction Solar Cells, Adv. Mater., 19 [12] 1551-1566 (2007)
[68] K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the Primary Photoexcitations in Poly(arylene-vinylenes), Synth. Met., 64 [2-3] 295-306 (1994)
[69] T. Stübinger and W. Brütting, “Exciton Diffusion and Optical Interference in Organic Donor-Acceptor Photovoltaic Cells, J. Appl. Phys., 90 [7] 3632-3641 (2001)
[70] P. A. van Hal, R. A. J. Janssen, G. Lanzani, G. Cerullo, M. Zavelani-Rossi, and S. D. Silvestri, “Full Temporal Resolution of the Two-Step Photoinduced Energy-Electron Transfer in a Fullerene-Oligothiophene-Fullerene Triad Using Sub-10 fs Pump-Probe Spectroscopy, Chem. Phys. Lett., 345 [1-2] 33-38 (2001)
[71] B. C. Zerza, G. Cerullo, S. D. Silvestri, and N. S. Sariciftci, “Ultrafast Charge Transfer in Conjugated Polymer-Fullerene Composites, Synth. Met., 119 [1-3] 637-638 (2001)
[72] J. Y. Kim and A. J. Bard, “Organic Donor/Acceptor Heterojunction Photovoltaic Devices based on Zinc Phthalocyanine and a Liquid Crystalline Perylene Diimide, Chem. Phys. Lett., 383 [1-2] 11-15 (2004)
[73] Z. R. Hong, C. J. Liang, X. Y. Sun, and X. T. Zeng, “Characterization of Organic Photovoltaic Devices with Indium-Tin-Oxide Anode Treated by Plasma in Various Gases, J. Appl. Phys., 100 [9] 093711 (2006)
[74] T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in Field Electroabsorption Spectroscopy of Polymer Light-emitting Diodes Incorporating a Doped Poly(3,4-ethylene dioxythiophene) Hole Injection Layer, Appl. Phys. Lett., 75 [12] 1679-1681 (1999)
[75] S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, “Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells, Adv. Funct. Mater., 16 [1] 95-100 (2006)
[76] C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/Metal Electrodes on the Performance of Plastic Solar Cells, Appl. Phys. Lett., 80 [7] 1288-1290 (2002)
[77] E. Ahlswede, J. Hanisch, and M. Powalla , “Comparative Study of the Influence of LiF, NaF, and KF on the Performance of Polymer Bulk heterojunction Solar Cells, Appl. Phys. Lett., 90 [16] 163504 (2007)
[78] M.O. Reese, M.S. White, G. Rumbles, D.S. Ginley, and S.E. Shaheen, “Optimal Negative Electrodes for Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Bulk Heterojunction Photovoltaic Devices, Appl. Phys. Lett., 92 [5] 053307 (2008)
[79] W. Cai, X. Gong, and Y. Cao, “Polymer Solar Cells: Recent Development and Possible Routes for Improvement of Power Conversion Efficiency, Sol. Energy Mater. Sol. Cells, 94 [2] 114 (2010)
[80] C. J. Brabec, “Organic Photovoltaics: Technology and Market, Sol. Energy Mater. Sol. Cells, 83 [2-3] 273-292 (2004)
[81] B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset Energies at Organic Semiconductor Heterojunctions and Their Influence on the Open-Circuit voltage of Thin-Film Solar Cells, Phys. Rev. B, 75 [11] 115327 (2007)
[82] M. F. Lo, T. W. Ng, T. Z. Liu, V. A. L. Roy, S. L. Lai, M. K. Fung, C. S. Lee, and S. T. Lee, “Limits of Open Circuit Voltage in Organic Photovoltaic Devices, Appl. Phys. Lett., 96 [11], 113303 (2010)
[83] E. Itoh and T. Shirotori, “Relationship Between Work Function of Hole Collection Electrode and Temperature Dependence of Open-Circuit Voltage in Multilayered Organic Solar Cells, Jpn. J. Appl. Phys., 51 [2, 2] 02BK14 (2012)
[84] P. Peumans and S. R. Forrest, “Separation of Geminate Charge-Pairs at Donor-Acceptor Interfaces in Disordered Solids, Chem. Phys. Lett., 398 [1-3] 27 (2004)
[85] M. Riede, T. Mueller, W. Tress, R. Schueppel, and K. Leo, “Small-Molecule Solar Cells–Status and Perspectives, Nanotechnology, 19 [42] 424001 (2008)
[86] S. Heutz, P. Sullivan, B.M. Sanderson, S.M. Schultes, T.S. Jones, “Influence of Molecular Architecture and Intermixing on the Photovoltaic, Morphological and Spectroscopic Properties of CuPc-C60 Heterojunctions, Sol. Energy Mater. Sol. Cells, 83 [2-3] 229-245 (2004)
[87] H. Kim, J. H. Seo, E. Y. Park, T.-D. Kim, K. Lee, K.-S. Lee, S. Cho, and A. J. Heeger , “Increased Open-Circuit Voltage in Bulk-Heterojunction Solar Cells Using a C60 Derivative, Appl. Phys. Lett., 97 [19] 193309 (2010)
[88] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells, Adv. Funct. Mater., 13 [1] 85-88 (2003)
[89] P. Peumans and S. R. Forrest, “Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells, Appl. Phys. Lett., 79 [1] 126 (2001)
[90] J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the Short Circuit Current in Organic Photovoltaic Devices with Microcavity Structures, Appl. Phys. Lett., 97 [8]083306 (2010)
[91] P.-C. Kao, S.-Y. Chu, H.-H. Huang, Z.-L. Tseng, and Y.-C. Chen, “Improved Efficiency of Organic Photovoltaic Cells Using Tris (8-hydroxy-quinoline) Aluminum as a Doping Material, Thin Solid Films, 517 [17] 5301-5304 (2009)
[92] V. Tripathi, D. Datta, G.S. Samal, A. Awasthi, and S. Kumar, “Role of Exciton Blocking Layers in Improving Efficiency of Copper Phthalocyanine Based Organic Solar Cells, J. Non-Cryst. Solids, 354 [19-25] 2901-2904 (2008)
[93] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (3rd edition), John Wiley & Sons, New York (NY), USA (2007)
[94] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview, J. Mater. Res., 19 [7] (2004)
[95] K.-S. Liao, S. D. Yambem, A. Haldar, N. J. Alley, and S. A. Curran, “Designs and Architectures for the Next Generation of Organic Solar Cells, Energies, 3 [6] 1212-1250 (2010)
[96] J. D. Servaites, S. Yeganeh, T. J. Marks, and M. A. Ratner, “Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance, Adv. Funct. Mater., 20 [1] 97-104 (2010)
[97] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% Efficient Organic Photovoltaic Cells with Low Series Resistances, Appl. Phys. Lett., 84 [16] 3013-3015 (2004)
[98] M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices, J. Am. Chem. Soc., 131 [26] 9281-9286 (2009)
[99] D. Gupta, M. Bag, and K. S. Narayan, “Correlating Reduced Fill Factor in Polymer Solar Cells to Contact Effects, Appl. Phys. Lett., 92 [9] 093301 (2008)
[100] M.-S. Kim, B.-G. Kim, and J. Kim, “Effective Variables To Control the Fill Factor of Organic Photovoltaic Cells, ACS Appl. Mater. Interfaces, 1 [6] 1264-126 (2009)
[101] S. Wu, Polymer Interface and Adhesion, Marcel Dekker, New York (NY), USA (1982)
[102] Z. Z. You, “Combined AFM, XPS, and Contact Angle Studies on Treated Indium-Tin-Oxide Films for Organic Light-Emitting Devices, Mater. Lett., 61 [18] 3809-3814 (2007)
[103] B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov, and Y. V. Salyn, “Simple and Coordination Compounds: An X-ray Photoelectron Spectroscopic Study of Certain Oxides, Russ. J. Inorg. Chem., 20 2307-2314 (1975)
[104] D. Costa, P. Marcus, and W.P. Yang, “Resistance to Pitting and Chemical Composition of Passive Films of a Fe-17% Cr Alloy in Chloride-Containing Acid Solution, J. Electrochem. Soc., 141 [10] 2669-2676 (1994)
[105] D. Briggs and M.P. Seah, Practical surface analysis (2nd edition), Vol.1, John Willey & Sons, New York (NY), USA (1993)
[106] C.D. Wagner, J.F. Moulder, L.E. Davis, and W.M. Riggs, Handbook of X-ray photoelectron spectroscopy , Physical Electronics Division (end of book), Perkin-Elmer Corporation, Waltham (MA), USA (1992)
[107] S. Maroie, G. Haemers, and J. J. Verbist, “Surface Oxidation of Polycrystalline α(75%Cu/25%Zn) and β(53%Cu/47%Zn) Brass as Studied by XPS: Influence of Oxygen Pressure, Appl. Surface Sci., 17 [4] 463-476 (1984)
[108] Y. Okazaki, Y. Ito, and T. Tateishi, “Corrosion Resistance of Implant Alloys in Pseudo Physiological Solution and Role of Alloying Elements in Passive Film, Materials Transactions- JIM, 38 [1] 78-84 (1997)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top