跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏銘信
研究生(外文):Ming-XinYan
論文名稱:即時人體動作重建之身體感測網路研製及應用
論文名稱(外文):Development of a Body Sensor Network for Real-Time Human Motion Reconstruction and Its Applications
指導教授:王振興王振興引用關係
指導教授(外文):Jeen-Shing Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:身體感測網路慣性感測人體動作重建
外文關鍵詞:Body sensor networkInertial sensingHuman Motion Reconstruction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:574
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在開發基於微慣性感測器模組化的穿戴式身體感測網路用以即時人體動作重建。此微慣性感測模組包含了微控制器、加速度計、陀螺儀及磁力計。身體感測網路是透過控制器區域網路(CAN-bus)進行人體各部位上各個微慣性感測電路模組之微慣性感測訊號整合,並可用以量測人體各部位在三維空間中運動所產生之加速度、角速度及磁場感測值。此即時人體動作重建系統藉由配戴在軀幹上的主感測器以射頻無線傳輸的方式將微慣性感測訊號傳送至電腦端,進行人體姿態估測。為了降低微慣性感測器訊號的雜訊及飄移在姿態估測上所造成的姿態誤差,我們發展了一基於四元數的非線性互補式濾波器來融合微慣性感測訊號。接著,我們利用一球旋轉座標系統來描述三維空間關節的旋轉並有效地改善肩關節活動度的量測精準度。最後,經由實驗結果已成功地驗證:1)本系統是一具有高信效度且不必依靠任何額外的參考資訊的人體動作重建工具;2)本系統之非線性互補式濾波器可有效地降低姿態估測誤差並且精準地重建人體動作軌跡;及3)本系統之球旋轉座標系統可精準地量測肩關節活動度。
This thesis presents a wearable inertial-sensor-based body sensor network (BSN) for real-time human motion reconstruction. The network consists of several inertial sensor modules, and each of them is composed of an ARM-based 32-bit microcontroller (MCU), a triaxial accelerometer, a triaxial gyroscope, and a triaxial magnetometer. The inertial sesnors modules are placed on the different positions of the human body. Real-time communications among the sensor modules are established via a controller area network (CAN) bus to capture human motions. The inertial signals generated by human movements are transmitted to a computer via a RF wireless transmission module on the host module placed on the human trunk. In order to minimize the cumulative errors caused by the intrinsic noise/drift of the inertial sensors, we utilize a sensor fusion algorithm based on a quaternion-based nonlinear complementary filter. Subsequently, we combine the sensor fusion algorithm with a spherical rotation coordinate system to describe 3D joint rotations for improving the accuracy of shoulder range of motion measurement (ROM). Finally, the experimental results successfully validate that 1) the proposed system is an inexpensive and effective tool that can be used anywhere without any external reference device, 2) its sensor fusion algorithm can reduce orientation error effectively and thus can reconstruct the body movement trajectories accurately, and 3) the sensor fusion algorithm with the spherical rotation coordinate system can measure shoulder range of motions accurately.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 3
1.3 研究目的 6
1.4 論文架構 7
第2章 可攜式身體感測網路 8
2.1 微慣性感測模組 8
2.1.1 微控制器 10
2.1.2 加速度計、磁力計 12
2.1.3 陀螺儀 13
2.1.4 無線射頻傳輸模組 14
2.1.5 電源供應模組 15
2.2 感測網路 15
2.2.1 控制器區域網路控制器 16
2.2.2 控制器區域網路收發器 16
2.3 身體感測網路系統 17
第3章 即時動作重建演算法 21
3.1 訊號前處理 22
3.1.1 感測器校正 22
3.1.2 感測器訊號濾波 25
3.2 基於非線性互補式濾波器之姿態估測演算法 26
3.3 3D虛擬人物建構 30
3.3.1 虛擬人物關節建構 30
3.3.2 基於前序收尋演算法之虛擬人物樹狀骨架結構 31
3.3.3 互動式虛擬人物介面 32
3.4 肩關節活動度量測 33
3.4.1 球座標之天頂角估測 36
第4章 實驗結果 40
4.1 肩關節活動度量測之效度驗證 40
4.1.1 效度實驗設置 40
4.1.2 效度驗證 42
4.2 肩關節活動度量測之信度驗證 46
4.2.1 信度實驗設置 47
4.2.2 施測者內信度驗證 49
4.2.3 施測者間信度驗證 53
4.3 全身日常生活動作驗證 61
第5章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 63
參考文獻 65

[1] H. Zhou and H. Hu, “Human motion tracking for rehabilitation-A survey, Biomed. Signal Process. Control, vol. 3, no. 1, pp. 1-18, 2008.
[2] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and J. Popović, “Practical motion capture in everyday surroundings, ACM Trans. Graph., vol. 26, no. 3, pp. 35:1-35:9, 2007.
[3] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based 3D tracking of hand articulations using kinect, in Proc. Brit. Mach. Vis. Conf. 2011.
[4] Xsens, Available: http://www.xsens.com
[5] Animazoo, Available: http://www.animazoo.com
[6] Y. Luo, C. C. Tsang, G. Zhang, Z. Dong, G. Shi, S. Y. Kwok, W. J. Li, P. H. W. Leong, and M. Y. Wong, “An attitude compensation technique for a MEMS motion sensor based digital writing instrument, in Proc. IEEE Int’l Conf. Nano/Micro Engineering and Molecular Systems, 2006, pp. 909-914.
[7] A. Olivares, J. M. Gorriz, J. Ramirez, and G. Olivares, “Accurate human limb angle measurement: Sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering, Measurement Science & Technology, vol. 20, no. 2, pp. 1-15, 2011.
[8] H. Fourati, N. Manamanni, L. Afilal, and H. Handrich, “A nonlinear filtering approach for the attitude and dynamic body acceleration estimation based on inertial and magnetic sensors: Bio-logging application, IEEE Sensor Journal, vol. 11 no. 1, pp. 233-243, 2011.
[9] K. Hayes, J. R. Walton, Z. L. Szomor, and G. A. Murrel, “Reliability of five for assessing shoulder range of motion, Australian Journal of Physiotherapy, vol. 47, no. 4, pp. 289-294, 2001.
[10] P. Piriyaprasarth, M. E. Morris, A. Winter, and A. E. Bialocerkowski, “The reliability of knee joint position testing using electrogoniometry, BMC Musculoskeletal Disorders, vol. 9, no. 6, pp. 1-10, 2008.
[11] microFET6 data sheet, Hoggan Health Industries.
[12] G. Cooper, I. Sheret, L. McMillian, K. Siliverdis, N. Sha, D. Hodgins, L. kenney, and D. Howard, “Inertial sensor-based knee flexion/extension angle estimation, Journal of Biomechanics, vol. 42, no. 16, pp. 2678-2685, 2009.
[13] B. Coley, B. M. Jolles, A. Farron, A. Bourgeois, F. Nussbaumer, C. Pichonnaz, and K. Aminian, “Outcome evaluation in shoulder surgery using 3D kinematics sensors, Gait & Posture, vol. 25, no. 4, pp. 523-532, 2007.
[14] H. Huang, W. Chen, W. Cheng, Y. Lai, and J. Lin, “RT3 accelerometer shoulder activity: Discrimination of activity levels by the RT3 accelerometer for the assessment of shoulder physical activity (SPA), Manual Therapy, vol. 16, no. 2, pp. 172-176, 2011.
[15] B. M. Jolles, C. Duc, B. Coley, K. Aminian, C. Pichonnaz, J. Bassin, and A. Farron, “Objective evaluation of shoulder function using body-fixed sensors: A new way to detect early treatment failures?, J. Shoulder Elbow Surg., vol. 20, no.7, pp. 1074-1081, 2011.
[16] G. R. Johnson and J. M. Anderson, “Measurement of three-dimensional shoulder movement by an electromagnetic sensor, Clinical Biomechanics, vol. 5, no. 3, pp. 131-136, 1990.
[17] P. L. Cheng, “A spherical rotation coordinate system for the description of three-dimensional joint rotations, Annals of Biomedical Engineering, vol. 28, no. 11, pp. 1381-1392, 2000.
[18] C. A. M. Doorenbosch, J. Harlaar, and D. Veeger, “The globe system: An unambiguous description of shoulder positions in daily life movement, Journal of Rehabilitation Research and Development, vol. 40, no. 2, pp. 147-156, 2003.
[19] STM32 data sheet, ST Microelectronics.
[20] LSM303DLH data sheet, ST Microelectronics.
[21] L3G4200D data sheet, ST Microelectronics.
[22] nRF24L01 data sheet, Nordic Semiconductor.
[23] L9616 data sheet, ST Microelectronics.
[24] M. J. Caruso, “Application of magnetoresistive sensors in navigation systems, Sens. Actuators, 1997.
[25] 鄭秉恩,混和慣性與光學感測技術之互動式手寫筆系統之研製,國立成功大學電機工程研究所碩士論文,2012.
[26] Y.-L. Hsu, L.-C. Kuo, P.-E. Cheng, C.-W. Chang, J.-C. Chiang, and J.-S. Wang, “MEMS inertial-sensor-based pedestrian navigation system, CCL Technical Journal, vol. 143, pp. 27-34, 2012.
[27] 謝豐任,人體動作捕捉系統之虛擬實境應用,國立成功大學電機工程研究所碩士論文,2011.
[28] Bullet 2.78 Physics SDK Manual.
[29] H. K. Unthoff, “Shoulder injury and disability, Workplace Safety and Insurance Appeals Tribunal, 2010.
[30] C. C. Norkin and D. J. White, Measurement of Joint Motion: A Guide to Goniometry. Philadelphia, F A Davis Co, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top