跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳長侶
研究生(外文):Chang-LuWu
論文名稱:氮化鎵系列發光二極體在圖形化基板上之研究
論文名稱(外文):The Investigation of Nitride-based LEDs on Patterned Sapphire substrate
指導教授:張守進張守進引用關係
指導教授(外文):Soou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:74
中文關鍵詞:氮化鎵發光二極體圖形化基板
外文關鍵詞:GaNLEDPatterned Sapphire Substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文針對利用有機金屬氣相沉積技術,在圖形化藍寶石機板上成長IGaN/GaN 薄膜量子井,並與傳統bare substrate成長薄膜做光電特性比較。利用圖形化基板成長氮價鎵可有效抑制因”晶格不匹配”所產生的threading dislocation (TDs),提升晶體品質,增加量子井載子複合機率。此外,圖形化基板也使的量子井所產生的光子與基板間夾角改變,不致在二極體內部形成全反射,換言之,可大幅提升光取出效率。
為了獲得LED亮度更大的提升與更高的Light extraction efficiency,我們分別在LED表面用 specular、V-shape pits作為不同型態,並加以分析。V shape pits 表面型態可使的Light extraction efficiency達到更好效果 。整體而言,運用圖型化藍寶石基板可減少二極體主動發光層所複合的光子被材料本身吸收,進而提升亮度。另外,為進一步研究不同圖形深度對光萃取有何影響,實驗中更安排了三種不同高度的圖形基板並成長LED結構,對其表面狀態進行觀察並分析其在亮度上之提升作用。
在圖形化基板上成長氮化鎵薄膜,我們使用了氮化鋁材料做為緩衝層,而隨後的成核層其成長條件極為關鍵,包含壓力、時間、氣氛與有機源…等,我們也針對不同的條件安排實驗,找到最適合的數據,並加以分析與比較。透過將磊晶層表面做粗化處理,使的主動發光層中的光子找到更多脫離管道,穿透材料進入空氣層進 一步達到更高的光萃取效率,目前雖然已是普遍做法,技術也相對成熟。但一般多運用於Bare sapphire成長薄膜上,本論文所進行的表面粗化處理是在圖型化基板成長薄膜後再進行粗化,所以,粗化過程中的條件,包含溫度、厚度與鎂參雜等都影響V-Shape形成及最佳化程度。而且也是影響二極體”順向電壓”、”光功率輸出”的重要關鍵。最後,經過一系列實驗安排與分析,我們總結了幾項要點:1圖形化基板不僅能有效減低氮化鎵成長於藍寶石機板之大量錯位密度,更提供相當程度的亮度提升。2.成長於圖形化基板之LED薄膜,加以表面粗化處理是可行的,並且也能提升亮度之表現。3.於粗化的LED表面形態下,利用加高圖形基板高度,也是改善光取出效果的可行方法,但必須確保在相同的表面形態下比較。

Abstract

In this thesis, we grown InGaN/GaN multiple quantum well on Patterned Sapphire Substrate by metalorganic chemical vapor phase deposition (MOCVD) technique and compared to the electronic and optical characteristic of growth on Conventional Sapphire Substrate. It can repressed efficiently the threading dislocations (TDs) due to lattice-mismatch decreasing, furthermore, improved film quality and raised the opportunity of carriers recombination from growth GaN film on PSS. In addition, the Patterned Sapphire Substrate (PSS) also changed the angle which between the photons from active region and substrate that avoid the loss of totally reflection, in the other hand, the light extraction efficiency can be improved obviously.
For getting more brightness improvement and light extraction efficiency, we adopted the specular and V-shaped pits surface on LEDs, respectively and analyze them. The V-shape pits surface morphogoly can achieve a better light extraction efficiency. Overall, usage PSS be able to reduce the light from active region be absorbed by substrate in itself, further to improve brightness. On the side, we are interested for how influence of the light extraction on usage various cone height of PSS. Thus we arrange three kinds of cone height of PSS to grow LEDs structure and observe the surface condition further analysis the efficiency of brightness improvement.
In this project deposit GaN thin film on patterned substrate using AlN as buffer layer. The following nuclear layer can be influenced by many factors including pressure, time, atmosphere and MO source etc.
We conducted a great deal of experiments under different situation and compared the results which were based on the most reliable data. Nowadays it is very common to use roughening treatment which would not only help photons in active emitting layer to escape from LED conduit and enter the air but also improve the light extraction efficiency. However this technology is mainly used for Conventional Sapphire Substrate (CSS). The object of this thesis is to focus on the roughening treatment on the surface after process of roughening treatment on the PSS. During the roughening treatment, we investigated the effect of temperature, thickness, concentration of Mg upon the V-shape, forward voltage and optical power output. In conclusion: 1. PPS reduces dislocation density during GaN growing as well as improving the output power. 2. It is possible to apply surface roughness treatment on patterned substrate for LED thin film growth 3. Under the same roughness treatment, further increased the height of pattern substrate could improve the light extraction efficiency.

Contents

Abstracts(Chinese)-----------------------I
Abstracts (English)----------------------IV
Contents---------------------------------VII
Figure Captions -------------------------IX
Table Captions --------------------------XII


Chapter 1: Introduction
1.1 Background of research and motivation -----01
Reference --------------------------------------04

Chapter 2 : The basic theory and measurement system introduction
2.1: The method of LED fabrication by MOCVD-----06
2.2: Ⅲ-Ⅴ Nitride Based MOCVD Reactor System----10
2.3: Process tools introduction ---------------11
2.4 : Measurement system------------------------16
2.5 : Patterned Sapphire Substrate--------------17
Reference---------------------------------------28

Chapter 3 : The film quality analysis on CSS and PSS
3.1: Background---------------------------------30
3.2: Fabrication of PSS-------------------------31
3.3: N-GaN and MQW bulk fabrication-------------31
Summary-----------------------------------------34
Reference---------------------------------------41

Chapter 4 : GaN-Based light emitting diodes grown on the conventional and patterned sapphire substrate
4.1:Background----------------------------------42
4.2: Growing LED structure on patterned and conventional sapphire substrate by
MOCVD-------------------------------------------44
4.2.1: Fabrication procedure of LEDs on CSS with rough p-type surface------------------------------------44
4.2.2: Fabrication procedure of LEDs on PSS with flat p-type surface------------------------------------45
4.2.3: Fabrication procedure of LEDs on PSS with rough p-type surface------------------------------------47
4.2.4: LEDs growth on different heights of PSS for the output power enhancement------------------------49

Chapter 5 : Result and discussion---------------60
Reference---------------------------------------72

Chapter 6 : Conclusion -------------------------73

References
[1] Nakamura S, Pearton S, Fasol G, The blue laser diode. 2nd ed. Berlin: Springer (2000).
[2] Koike M, Shibata N, Kato H, Takahashi Y, Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications. IEEE J. Sel Top Quant Electron. ,8271-7 (2002).
[3] Schubert EF, Kim JK, Solid-state light source getting smart, Science, 308, 1274-8 (2005).
[4] Krames MP, Shchekin OB, Mach RM, Mueller GO, Zhou L, Harbers G, et al. Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp Technol , 3:160 (2007).
[5] Amano H, Takanami S, Iwaya M, Kamiyama S, Aksaki I. Group Ⅲ nitride-based UV light emitting devices, Phys Status Solidi A. ,195, 491-5 (2003).
[6] Sharma N, Thomas P, Tricker D, Humphreys C, Chemical mapping and formation of V-defects in InGaN multiple quantum wells. Appl Phys Lett. , 77, 1274-6 (2000).
[7] Nam OH, Zheleva TS, Bremser MD, Davis RF, Lateral epitaxial overgrowth of GaN films on SiO2 areas via metalorganic vapor phase epitaxy. J. Electron Mater. , 27, 233-7 (1998).
[8] Tadatomo K, Ohuchi Y, Tsunekawa Y, Kato M, et al. High output power InGaN ultraviolet light-emitting diodes fabricated on patterned sapphire substrate using metalorganic vapor phase epitaxy. Jpn J Appl Phys, 40, L583-5 (2001).
[9] Wuu Ds, Wang WK, Shih WC, Horng RH, Lee CE,Lin WY, et al. Enhanced output power of near-ultraviolet InGaN LEDs grown on patterned sapphire substrates. IEEE Photon Technol Lett., 17, 288-90 (2005).
[10] Lee Yj, Hwang JM, Hsu TC, Hsieh MH, Jou MJ, Lee BJ, et al, Enhancing the output power of GaN-Based LEDs grown on wet-etched patterned sapphire substrate. IEEE Photon Technol Lett., 18, 1152-4 (2006).
[11] Strittmatter A, Rodt S, Reibmann L, Bimberg D, Schroder H, Obermier E, et al. Maskless epitaxial lateral overgrowth of GaN layers on substrated Si (111) substrate. Appl Phys Lett., 78, 727-9 (2001).
[12] Yamada M, Mitani T, Narukawa Y, Shioji S, Niki I, Sonobe S, et al. InGaN-Based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn Appl Phys., 41, L1431-3 (2002).
[13] Feng ZH, Lau KM. Enhanced luminescence from GaN-based blue leds grown on grooved sapphire substrate. IEEE Photon Technol Lett ., 17, 1812-4 (2005).
[14] Cuong TV, Cheong HS, Kim HY, Hong CH, Suh EK, et al. Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning. Appl Phys Lett ., 90, 131107 (2007).
[15] Wu GM, You ZD. Enhanced light extraction efficiency by surface lattice arrays using blue InGaN/GaN multiple quantum wells. Solid state Electron, 51, 1351-9 (2007).
[16] Hsu YP, Chang SJ, Su YK, Sheu JK, Lee CT, Wen TC, et al. Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs. J Cryst Growth , 26, 466-70 (2004).
[17] Che SB, Terashima W, Ishitani I, Yoshikawa A, Matsuda T, Ishii H, et al. Fine-structure N-polarity InN/InGaN MQW LEDs. J Cryst Growth , 26, 466-70 (2004).
[18] S. Nakamura and G. Fasol, The Blue Laser Diode Springer, Berline (1997).
[19] S. Nakamura, M. Senoh. N. Iwasa and S. Nagahama, High brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structure, Jpn. Jppl. Phys, Part. Vol. 34, pp. L797, 800 (1995).
[20] L. H. Ho and G.B. Stringfellow, “Solid phase immiscibility in GaInN, Appl. Phys. Lett., Vol. 69, pp. 2701-2703 (1996).
[21] E. F. Schubert, “Light Emitting Diodes “ Cambridge University Press, pp. 185 (2003).
[22] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper and L. F. Lester, “High Density Plasma-Induced Etch Damage in GaN, Mat. Res. Soc. Symp. Proc. Vol. 573, pp. 271-276 (1999).
[23] Adessida, A. Mahajan, E. Andideh, M. A. Kahn, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett., 63-2777 (1993).
[24] S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, Vac. Sci. Technol. A 111772 (1993).
[25] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, Appl. Phys. Lett. 69, 1119 (1996).
[26] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting diode applications “ J. Vac. Sci. Technol. B, vol 20, p. 902 (2002).
[27] VLSI製造技術 莊達人 編著 高立圖書有限公司
[28] J. L. Vossen and W. Kern, “Thin Film Processes, Academic Press, New York, pp. 131 (1978).
[29] C. Y. Chang and S. M. Sze, “ULSI Technology, McGraw-Hill, New York, pp. 380 (1996).
[30] S. I. Shah, “Handbook of Thin Film Press Technology, Institute of Physics Pub, Bristol, UK, pp. A3.0:1 (1995).
[31] S. M. Sze, “VLSI Technilogy, McGraw-Hill, New York, pp. 387 (1978).
[32] E. Fred Schubert, “Light-Emitting Diodes, second edition, 86 (2006).
[33] S. Nakamira, and M. Senoh, Appl, Phys. Lett., 4, 3 (1998).
[34] H. K. Cho, D. C. Kim, H. J. Lee, H. S. Cheong, and C. H. Hong, Superlat. & Microst., 36, 385 (2004).
[35] K. J. Linthicum, T. Geheke, D. B. Thomson, and K. M. Tracy, J. Nitride Semicond. Res., 4S1, G4.9 (1990).
[36] A.M. Roskowski, P. Q. Miraglia, E. A. Preble, S. Einfeldt, and R.F. Davis, J. Crystal Growth, 241, 141 (2002).
[37] I. Kidoguchi, A. Ishibashi, G. Sugahara and Y. Ban, Appl. Phys. Lett., 76, 3768 (2000).
[38] Y.CKawaguhi, G. Sugahara, A. Mochida, T. Shimamoto, A. Ishibashi, and T. Yokogawa, Phys. Stat. Stat. sol. (c), 0, 2107 (2003).
[39] Y. Chen, R. Schneider, S. Y. Wang, R. S. Kem, C. H. Chen, and C. P. Kuo, Appl. Phys. Lett., 75, 2062 (1999).
[40] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, Appl. Phys. Lett., 77, 3233 (2000).
[41] E. Fred Schubert, “Light-Emitting Diodes, second edition, 91 (2006).
[42] E. F. Schubert and J. K. Kim, Science, 308, 1274 (2005).
[43] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, IEEE Photonic Tech. Lett., 14, 1668 (2002).
[44] C. F. Shen, S. J. Chang, W. S. Chen, T. K. Kuo, and S. C. Shei, IEEE Photonic Tech. Lett., 19, 780 (2007).
[45] A. Sakai, H. Sunakawa, and A, Usui, Appl. Lett., 71, 2259 (1997).
[46] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, Appl. Phys. Lett., 71, 2472 (1997).
[47] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, J. Crystal Growth, 221, 316 (2000).
[48] K Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, J. J. Appl. Phys., 40, 583 (2001).
[49] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, J. J. Appl. Phys., 41, 1431 (2002).
[50] D. S. Wuu, W. K. Wang, IEEE Photonic Tec. Lett., 17, 88 (2005).
[51] Z. H Feng and K. M. Lau, IEEE Phoyonic Tech. Lett., 17, 1812 (2005).
[52] Y. J. Lee, T. C. Hsu, H. C. Kuo, S.C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, Mater. Sci. Eng., 122, 184 (2005).
[53] K. Tadatomo, H. Okagawaa, Y. Ohuchia, T. Tsunekawaa, H. Judoa, Y. Sudos, M. Katob, and T, Taguchic, Proc. Spie, 5187, 243 (2004).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊