跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃富耑
研究生(外文):Fu-JhuanHuang
論文名稱:應用於無線生醫遙測系統之天線設計
論文名稱(外文):Antenna Design for the Applications of Wireless Biotelemetry Systems
指導教授:羅錦興羅錦興引用關係
指導教授(外文):Ching-Hsing Luo
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:117
中文關鍵詞:植入式天線無線生醫遙測圓極化毫米波積體被動元件製程
外文關鍵詞:Implantable antennaBiotelemetryCircularly PolarizationMMW (millimeter wave)IPD (Integrated Passive Device)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
現今無線生醫遙測系統廣泛地被討論及應用,目的皆在擷取人體的生理訊號,做為健康監控與觀察。然而要將無線裝置擺放在人體身上,甚至是體內,因為受到環境和尺寸的限制,對於天線設計面臨重大考驗。在目前已發表的數篇植入式天線研究文獻中顯示,操作頻帶大多為單頻,且天線體積約為 150 至 1300 mm3,其增益值僅有-38至-25 dB,對射頻電路設計造成極大負擔。在穿戴式裝置研究方面,鮮少提及何種天線形式適合被採用,甚至對人體造成的影響也乏人討論。另外在本文中亦討論毫米波頻段在無線生醫遙測系統的應用。其擁有高頻寬高速資料量傳遞的特性,可做為醫學檢測的多媒體影像檔案傳輸。例如,膠囊內視鏡攝影,核磁共振影像。目前研究學者較多以利用CMOS製程開發單一系統晶片。但是半導體矽基板造成損耗較大,將天線整合進CMOS晶片中則會使輻射效率變低,天線增益值僅約 -13至-0.2 dB。綜合以上觀點,在本篇論文當中,從系統角度反觀規格需求,探討三種適合應用於無線生醫遙測裝置的天線設計,目的在希望能結合植入式、穿戴式裝置及毫米波頻段,做為提升醫療監控和健康照護品質。
  對於植入式裝置而言,天線設計受限於人體環境影響,使得輻射效率極低。為改善效率問題,在本文中提出新型植入式天線設計,利用π型輻射體結合彎摺金屬片的倒F型天線,且採用堆疊式多層板結構來縮小體積。可穿戴式裝置雖然是放置在體外,天線對人體所造成的電磁波輻射量仍需被考慮。在本文中提出可抑制高次諧波的圓極化微帶天線設計,目的在於利用微帶天線的高指向性特色,使電磁波輻射向外,減少對人體的輻射傷害。透過改變天線金屬邊緣的凹角尺寸,可激發相位差九十度及正交的雙諧振模態來產生圓極化特性,提升收發效率,亦可增加頻寬;而透過改變天線上的直角槽孔尺寸,調整高次諧波電流路徑,則可以達到抑制二次及三次諧波能量的效果,可降低高次諧波對周邊電路干擾現象。另外,在本文中亦探討利用積體被動元件製程所研製的毫米波頻帶晶片型天線,採用八木天線結構設計,具有高增益及高效率的特性。
  研究結果顯示,我們提出的新型植入式天線設計同時可涵蓋三個頻段(MICS: 402-405 MHz;ISM: 433 MHz;ISM: 2.40-2.48 GHz)。不僅將體積縮小至僅有 245 mm3,而且將天線增益值也提升突破至 -7 dB。在可抑制高頻諧波的圓極化微帶天線研究方面,其對人體SAR值模擬結果僅有0.67 W/kg(小於安全規範1.6 W/kg)。量測結果顯示其天線操作在頻率 2.4 GHz,頻寬增加為 137 MHz,而圓極化頻寬為 30 MHz,可以使天線接收效率更為穩定;在二次及三次諧波的阻抗匹配也被抑制成分別為僅為 -0.2 及 -2.2 dB,提升抗干擾能力。在 60 GHz 晶片天線設計方面,其面積為 1.5 x 1.8 mm2,量測結果顯示頻寬可達 18 % (53.8–64.8 GHz),增益值約為 6 dBi,輻射效率更高達 93%。
  因此,在本文中提出的三種天線設計,探討三種不同形式的無線生醫遙測系統應用。新型植入式天線設計可應用於植入式無線生醫遙測系統,並與無線傳能電路結合成為一整流天線,解決了植入式裝置電源問題,也將天線佔用空間縮至最小。研究成果顯示,此植入式整流天線可將接收到的無線微波能量轉換成為直流電源,效率可高達86 %。此外,具抑制高頻諧波的圓極化微帶天線設計,目的在應用於無線生理訊號監控裝置,作為生醫非侵入式檢測裝置應用。為驗證其天線接收效率,亦將此天線與無線傳能電路整合為整流天線應用,結果顯示其圓極化特性可使其接收效率穩定,不受角度限制。雖然在60 GHz IPD晶片天線未完成其天線與電路整合封裝測試階段,但仍可為後續研究發展,增加不少經驗以及提高成功機會。未來期望完成整合此三種無線生醫遙測系統,對於現代人的生活則可達到全方位的健康安全照護。
Recently, wireless biotelemetry systems (WBS) have been widely applied to acquire physiological signals for healthcare monitoring applications. Environment and size limitations have a large influence on antenna design for applications in which people must wear a wireless sensing device or have one implanted in their body. It has been reported that implantable antennas are around 150 to 1300 mm3, and antenna gains are only -38 to -25 dB. Poor radiation efficiency increases the loading and risks of RF circuit design. On the other hand, antenna designs for wearable device applications do not take into account the requirements for implantation in the human body. Even favorable antenna types for wearable system development aren’t discussed. Chip antenna design for millimeter-wave (MMW) communication is also presented in this dissertation. Throughout the world approximately 5-7 GHz bandwidth is available over the 60 GHz MMW band. This high-speed wide bandwidth can also be applied to WBS applications such as capsule endoscopy and magnetic resonance imaging (MRI). However, given today’s achievable integration levels and packaging constraints, an antenna designed for a system-on-a-chip (SoC) is more important than ever. Integrated antennas on silicon provide a relatively low gain and reduced radiation efficiency because of the lossy substrate. The literature indicates that the gains of CMOS chip antennas are only -0.2 to -13 dB. In light of the key points mentioned above, the specifications for antenna design need be defined by system requisitions. In this dissertation, three types of antenna designs for WBS applications are proposed and discussed in detail. By integrating the implantable device, wearable device, and MMW communication, the quality of medical monitoring and healthcare can be greatly improved.
Antenna performance in implantable devices is restricted by the lossy tissues of human body. Thus, a novel PIFA antenna design is proposed. It uses a π-shaped radiator with both a stacked and a spiral structure for triple band operation and size reduction. For implementation of the wearable device, a microstrip antenna design that effectively attains circular polarization (CP) and harmonic suppression (HS) is proposed. CP can reduce polarization loss and improve receiving efficiency. Moreover, HS can reduce high-frequency harmonic radiation to solve the EMC problem without using filters. By modifying the size and position of the two peripheral cuts, two orthogonal modes of equal amplitude that are 90° out of phase are simultaneously excited to create circulator polarization properties. The four right-angle slits embedded in the antenna can block the second- and third-order harmonic signals. The use of SiP technology to improve chip antenna performance is also investigated and discussed. To improve gain and efficiency, an on-chip Yagi-Uda antenna is proposed and implemented using the integrated passive device (IPD) process.
The measured results indicate that the proposed novel implantable antenna effectively covers three bands (the medical implant communications service (MICS) band of 402 MHz, and the industrial, scientific, and medical (ISM) bands of 433 MHz and 2.45 GHz). The antenna has compact size of only 254 mm3. The gain of the proposed antenna is also improved by up to -7 dB. In the design of the proposed CP antenna with HS, the simulated SAR value is only 0.67 W/kg (below the 1.6 W/kg required by safety regulations). The adopted CP antenna is built on a low-cost FR-4 substrate has a measured bandwidth of 137 MHz and a 30-MHz CP bandwidth. The results of the proposed antenna indicate that it performs well and has steady efficiency. The return loss of the 2nd and 3rd harmonic frequencies is only -0.2 and -2.2 dB, respectively. Moreover, measurements of the 60 GHz IPD chip antenna indicate that the on-chip antenna achieves a bandwidth of 18% (53.8-64.8 GHz) and a peak gain of 6 dBi. The simulated front-to-back ratio and radiation efficiency are 15 dB and 93%, respectively. The loss of the designed antenna is much better than that of the CMOS process. Thus, this 60-GHz chip antenna obtains a compact area size of 1.5 × 1.8 mm2, high efficiency, and high-gain advantages.
The proposed implantable antenna can be applied in an implantable biotelemetry system with a wireless charging circuit. The implantable rectenna is composed of the proposed triple-band antenna and wireless powering circuit. The measured RF to DC efficiency is around 86%. This method can provide enough energy for long-term operation and a small antenna. The proposed CP antenna with HS can be applied in the wireless physiological signal monitoring system for a non-invasive test. In order to verify the reception performance of the proposed antenna, it is integrated with a wireless power circuit. Measurements indicate that the efficiency of the CP antenna is very stable. Although the proposed 60GHz chip antenna has not been integrated with other circuits, the design details of the on-chip antennas herein and the results that pertain to them are thus expected to be useful for engineers who are interested in designing front ends for MMW radios. Finally, by combining the three wireless biotelemetry systems mentioned above, all of the functions necessary for healthcare monitoring can be achieved in the future.
Table of Contents

Abstract (Chinese) I
Abstract (English) III
Acknowledgment V
Table of Contents VII
Figure Caption IX
Table Caption XII

Chapter 1 Introduction 1
1.1 Preview of Wireless Home/Healthcare Monitoring Systems 1
1.2 Preview of Wireless Implantable Systems and Wireless Powering/Charging Transmission 5
1.3 Preview of Wireless Portable Devices for Physiological Signal Acquisition 12
1.4 Preview of MMW Communication for Wireless Personal Area Network Application 15
1.5 Motivation 20
1.6 Organization of Dissertation 22

Chapter 2 Antenna Design for Biotelemetry Applications 25
2.1 Implantable Antenna Design for Triple-band Biotelemetry Application 25
2.1.1 Review of Implantable Antenna Design 25
2.1.2 Miniaturized Implantable Antenna Design 29
2.1.3 The Electrical Properties of Minced Pork 34
2.2 Antenna Design for Wireless Physiological Signal Acquisition Device 37
2.2.1 Review of Antenna Design for AIA and Rectenna Application 37
2.2.2 Design of Circular Polarization Antenna with Harmonic Suppression for Rectenna Application 38
2.3 MMW Antenna Design for 60GHz WPAN Application 42
2.3.1 Review of MMW Antenna Design 42
2.3.2 MMW Chip Antenna Design in IPD Process 43


Chapter 3 Measurements and Results 47
3.1 Measurements of Triple-band Implantable Antenna 47
3.1.1 Measurement Setup for Implantable Antenna 47
3.1.2 Implementation of Implantable Rectenna 52
3.2 Measurements of Circular Polarization Antenna with Harmonic Suppression 58
3.2.1 S-parameters and Radiation Patterns of CP Antenna with HS 58
3.2.2 Implementation of CP Rectenna 61
3.3 Measurements of MMW Chip Antenna 63
3.3.1 Measurements of Return Loss and Antenna Power Gain 63
3.3.2 Radiation Pattern Characteristics 65

Chapter 4 Discussion and Conclusion 69

Reference 71

Appendix—Implementations of Wireless Biotelemetry Systems 77
A.1 Implementation of Novel Triple-Band Biotelemetry System 77
A.1.1 Review of Multi-Band Biotelemetry System 77
A.1.2 Description of Novel Triple-Band Biotelemetry System 80
A.1.3 Summary of Triple-Band Biotelemetry System 90
A.2 Implementation of Wireless ECG Monitoring Application 91
A.2.1 Review of Wireless ECG Measurement System 91
A.2.2 Description of Wireless ECG Monitoring System 94
A.2.3 Measurement Results 101
A.2.4 Summary of Wearable Wireless ECG Acquisition Device 107
A.3 Introduction of 60 GHz Multi-Media Biosensor Network System 108

Publications list 115

VITA 117

Reference
[1]M. Naeemabadi, M. Zabihi, B. S. Ordoubadi, M. A. Saleh, M. A. Khalilzadeh, M. S. Ordoubadi, “Tele-homecare system design for elderly, IEEE Application of Information and Communication Technology, pp. 1-5, Dec. 2011.
[2]US. Census Bureau, Population Division. http://www.census.gov.
[3]Philips Home Telemonitoring System, Motiva System Overview, May 2007.
[4]Cybermedical, MedStar 300 http://www.cybernetmedical.comlindex.php/medstar-300, Series.
[5]Intel Health Guide PHS6000, http://www.intel.com/healthcare/telehealth.
[6]L. Kent, B. O'Neill, G. Davison, A. Nevill, J. S. Elborn, J. M. Bradley, Validity and reliability of cardiorespiratory measurements recorded by the life shirt during exercise tests, Respiratory Physiology & Neurobiology, pp. 162-167, Jun. 2009.
[7]S. Goodrich, W. C. Orr, An investigation of the validity of the Life shirt in comparison to standard polysomnography in the detection of obstructive sleep apnea, Sleep Medicine, vol. 10, pp. 118-122, Jan. 2009.
[8]H. Chen, W. Wu, J. Lee, A wban-based real-time electroencephalogram monitoring system: design and implementation, Journal of Medical System, vol. 34, no. 3, pp. 303-311, Mar. 2009.
[9]P. Bifulco, G. Gargiulo, M. Romano, A. Fratini and M. Cesarelli, Bluetooth portable device for continuous ECG and patient motion monitoring during daily life, IFMBE Proceedings 16, pp. 369-372, Dec. 2007.
[10]H. B. Li, T. Takahashi, M. Toyoda, Y. Mori, R. Kohno, Wireless body area network combined with satellite communication for remote medical and Healthcare Applications, Wireless Personal Communication, vol.51, pp. 697-709, Jul. 2009.
[11]C. M. Hsu, W. Y. Liao, C. H. Luo, T. C. Chou, The 2.4 GHz biotelemetry chip for healthcare monitoring system, Sensors and Actuators A, vol. 139, pp. 245-251, Sep. 2007.
[12]C. Wen, M. F. Yeh, K. C. Chang, R. G. Lee, Real-time ECG telemonitoring system design with mobile phone platform, Measurement, vol. 41, pp. 463-470, Dec. 2008.
[13]M. S. Wegmueller, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, Digital data communication through the human body for biomedical monitoring sensor, IFMBE Proceedings, vol. 14, part 7, pp. 608-612, Dec. 2007.
[14]P. Valdastri, S. Rossi, A. Menciassi, V. Lionetti, F. Bernini, F. A. Recchia, P. Dario, An implantable zigbee ready telemetric platform for in vivo monitoring of physiological parameters, Sensors and Actuators A, vol. 142, pp. 369-378, Jul. 2008.
[15]W. T. Tang, C. M. Hu, and C. Y. Hsu, “A mobile phone based homecare management system on the cloud, IEEE BMEI 2010, pp. 2442-2445, Nov. 2010.
[16]SECOM, http://www.mycasa.com.tw/html/.
[17]L. Griffiths, “Analysis of wire antennas for implantation in the body, Master thesis, Utah State University, Logan, UT, Jul. 2002.
[18]P. Soontornpipit, C. M. Furse, and Y. C. Chung, “Design of implantable microstrip antennas for communication with medical implants, IEEE Transaction on Microwave Technology and Theory, vol. 52, no. 8, pp. 1944-1951, Aug. 2004.
[19]J. Kim, and Y. Rahmat-Samii, “Implanted antennas inside a human body: simulations, designs, and characterizations, IEEE Transaction on Microwave Technology and Theory, vol. 52, no. 8, pp. 1934-1943, Aug. 2004.
[20]J. Johansson, “Wireless communication with medical implants: antennas and propagations, PhD Dissertation, Lund University, Jul. 2004.
[21]K. Gosalia, J. Weiland, M. Humayun, and G. Lazzi, “Thermal elevation in the human eye and head due to the operation of a retinal prosthesis, IEEE Transaction on Biomedical Engineering, vol. 51, no. 8, pp.1469-1477, Aug. 2004.
[22]P. Soontornpipit, “Design of implantable antennas for communication with medical implants, Master thesis, Dept. Elect. Computer Engineering, Utah State University, Logan, UT, Jul. 2002.
[23]C. M. Lee, T. C. Yo, C. H. Luo, C. H. Tu, and T. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical devices, Electron Letter, vol. 43, pp. 660-662, Jul. 2007.
[24]W. C. Liu, F. M. Yeh, and M. Ghavami, “Miniaturized implantable broadband antenna for biotelemetry communication, Microwave Optical Technology Letter, vol. 50, pp. 2407-2409, Mar. 2008.
[25]W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices, Microwave Optical Technology Letter, vol. 51, no. 3, pp. 755-757, Oct. 2009.
[26]W. C. Liu et al., “A neuro-stimulus chip with telemetry unit for retinal prosthetic device, IEEE Journal of Solid State Circuits, vol. 35, pp. 1487-1497, Oct. 2000.
[27]D. Scribner, et al., “A retinal prosthesis technology based on CMOS microelectronics and microwire glass electrodes, IEEE Transaction on Biomedical Circuit and System, vol. 1, no. 1, pp. 73-84, Mar. 2007.
[28]W. D. Lai and T. M. Choi., “Incorporating the electrode-tissue interface to cochlear implant models, IEEE Trans. On Magnetics, vol. 43, no. 4, pp. 1721-1724, Apr. 2007.
[29]S. Kwan An, et al., “Design for a simplified cochlear implant system, IEEE Transaction on Biomedical Engineering, vol. 54, no. 6, pp. 973-982, Jun. 2007.
[30]V. Stetten et al., “A one-compartment, direct glucose fuel cell for powering long-term medical implants, 19th IEEE International Conference of Micro Electro Mechanical Systems (MEMS 06) , pp. 934-937, Jul. 2006.
[31]M. Leonardi et al., “A soft contact lens with a MEMS strain gage embedded for intraoccular pressure monitoring, 12th International Conference of Transducers, Solid-State Sensors, Actuators, and Microsystems, pp. 1043-1046, Mar. 2003.
[32]D. Hodgins, A. Bertsch, N. Post, M. Frischholz, B. Volckaerts, J. Spensley, J. M. Wasikiewicz, H. Higgins, F. V. Stetten, L. Kenney, “Healthy aims: developing new medical implants and diagnostic equipment, IEEE Pervasive Computing, vol. 7, no. 1, pp. 14-21, Jan. 2008.
[33]S. Boyer, M. Sawan, M. Abdel-Gawad, S. Robin, and M. M. Elhilali, “Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs, IEEE Transaction on Rehabilitation Engineering, vol. 8, no. 4, pp. 464-470, Dec. 2000.
[34]T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual band implantable antenna and development of skin mimicking gels for continuous glucose monitoring, IEEE Transaction on Microwave Technology and Theory, vol. 56, no. 4, pp. 1001-1008, Apr. 2008.
[35]Medical implantable RF transceiver ZL70101 data sheet, Zarlink Semiconductor, Ottawa, ON, Canada, Oct. 2006.
[36]T. Yilmaz, T. Karacolak, and E. Topsakal, “Characterization and testing of a skin mimicking material for implantable antennas operating at ISM band (2.4 GHz-2.48 GHz), IEEE Antenna and Wireless Propagation Letter, vol. 7, pp. 418-420, Apr. 2008.
[37]T. Karacolak and E. Topsakal, “Electrical properties of nude rat skin and design of implantable antennas for wireless data telemetry, IEEE MTT-S international, pp. 907-910, Nov. 2008.
[38]T. Karacolak, R. Cooper, and E. Topsakal “Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry, IEEE Transaction on Antenna and Propagation, vol. 57, no. 9, pp. 2806-2812, Sep. 2009.
[39]P. Scholz, C. Reinhold, W. John and U. Hilleringmann, “Analysis of energy transmission for inductive coupled RFID tags, IEEE International Conference on RFID, pp. 183-190, Mar. 2007.
[40]S. Y. Lee, and S. Y. Lee, “An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation, IEEE Transaction on Circuits and System I, vol. 52, no. 12, pp. 2526-2538, Dec. 2005.
[41]P. Si, A. P. Hu, S. Malpas, D. Budgett, “A Frequency control method for regulating wireless power to implantable devices, IEEE Transaction on Biomedical Circuit and System, vol. 2, no. 1, Mar. 2008.
[42]R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications, IEEE Microwave Magazine, vol. 3, no. 1, pp. 71-79, Mar. 2002.
[43]W. C. Brown, J. R. Mims and N. I. Heenan, “An experimental microwave-powered helicopter, IRE International Convention Record, vol. 13, no. 5, pp. 225-235, Mar. 1965.
[44]R. Y. Miyamoto, Y. Qian, and T. Itoh, “A reconfigurable active retrodirective/direct conversion receiver array for wireless sensor systems, Microwave Symposium in Digest, IEEE MTT-S International, vol. 2, pp. 1119-1122, Nov. 2001.
[45]E. Waterhouse, “New horizons in ambulatory electroencephalography, IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 3, pp. 74-80, May. 2003.
[46]J. C. Yao, R. Schmitz, S. Rarren, “A wearable point-of-care system for home use that incorporates plug-and-play and wireless standards, IEEE Transactions on Information Technology in Biomedical, vol. 9, no. 3, pp 363-371, Sep. 2005.
[47]Y. H. Lin, I. C. Jan, P. Chow, Y. Y. Chen, J. M. Wong, and G. J. Jan, “A wireless PDA-based physiological monitoring system for patient transport, IEEE Transactions on Information Technology in Biomedical, vol. 9, No. 4, pp. 439-447, Dec. 2004.
[48]R. Schmidt, T. Norgall, J. Mörsdorf, J. Bernhard, T. von der Grün, “Body area network BAN–a key infrastructure element for patient-centered medical applications, Biomedical Technology, vol. 47, pp. 365-368, 2002.
[49]R. F. Yazicioglu, C. V. Hoof, R. Puers, “Biopotential readout circuits for portable acquisition systems, Springer, 2008.
[50]C. L. Chang, C. W Chang, C. M. Hsu, C. H. Luo, J. C. Chiou, “A power-efficient wireless sensor for physiological signal acquisition, Journal of Micro/ Nanolithography, MEMS, and MOEMS (JM3), vol. 8, pp. 1-7 , Apr. 2009.
[51]J. Proulx, R.Clifford, S. Sorensen, L. DahJye, J. Archibald, “Development and evaluation of a bluetooth EKG monitoring sensor, 19th IEEE International Symposium on Computer-Based Medical Systems, pp. 507-511, Jun. 2006.
[52]R. Morais, M. A. Fernandes, S. G.Matos, C. Serôdio, P. S. Ferreira, and M. C. Reis, “A zigbee multi-powered wireless acquisition device for remote sensing applications in precision viticulture, Computers and Electronics in Agriculture, vol. 62, pp. 94-106, Apr. 2008.
[53]S. Breit, S. Spieker, J. B. Schulz and T. Gasser, “Long-term EMG recordings differentiate between parkinsonian and essential tremor, Journal of Neurology, vol. 255, pp. 103-111, Mar. 2008.
[54]World Health Organization, “The world health report 2008, World Health Organization, Geneva, 2008. Available: http://www.who.int/whr/2008/whr08_en.pdf.
[55]R. J. Romanow, The future of healthcare in Canada-final report. Commission of the future of health care, Ottawa, Canada [Online].
[56]C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave wpan, and zigbee, IEEE Communications Magazine, pp. 70-78, Aug. 2007.
[57]P. Smulders, “60 GHz Radio: prospects and future directions, 10th IEEE Symposium on Communication and Vehicular Technology, Benelux, pp. 1-8, Nov. 2003.
[58]IEEE 802.15.3, “Channel model literature summary and capacity calculations, http://www.ieee802.org/15/pub/TG3c contributions.html.
[59]H. Singh, J. Oh, C. Y. Kweon, X. P. Qin, H. R. Shao, and C. Ngo, “A 60 GHz wireless network for enabling uncompressed video communication, IEEE Communications Magazine, pp. 71-78, Dec. 2008.
[60]S. Singh et al., “Millimeter wave WPAN: cross layer modeling and multihop architecture, IEEE INFOCOM Mini-symposium, May 2007.
[61]http://connectivitylab.eecs.berkeley.edu/brochures/60ghz.pdf.
[62]K. Okada, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, Ning Li, S. Ito, W. Chaivipas, R. Minami, A. Matsuzawa, “A 60GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver, International Solid-State Circuits Conference, pp. 160-162, Feb. 2011.
[63]R. S. Yahya, and J. Kim, “Implanted antennas inside a human body: simulations, designs, and characterizations, IEEE Transaction on Microwave Theory and Technology, vol. 52, pp. 1934-1943, 2004.
[64]C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Dual-resonant π-shape with double L-strips PIFA for implantable biotelemetry, Electronic Letter, vol. 44, no.14, pp. 837-838, Jul. 2008.
[65]C. M. Lee, T. C. Yo, F. J. Huang, and C.H. Luo, “Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry, Microwave and Optical Technology Letter, pp. 749-752, Mar. 2009.
[66]P. Soontornpipit, C. M. Furse and Y. C. Chung, “Miniaturized biocompatible microstrip antenna using genetic algorithm, IEEE Transaction on Antenna and propagation, vol. 53, no. 6, Jun. 2005.
[67]T. C. Yo, C. M. Lee, C. M. Hsu, and C. H. Luo, “Compact circularly polarized rectenna with unbalanced circular slots, IEEE Transaction on Antenna and propagation, vol. 56, no. 3, pp. 882-886, Mar. 2008.
[68]IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz, IEEE Standard C95.1-1999, Jul. 1999.
[69]J. O. Mcspadden, T. Yoo, and K. Chang, “Theoretical and experimental investigation of rectenna element for microwave power transmission, IEEE Transaction on Microwave Theory and Technology, vol. 40, no. 12, pp. 2359-2366, Dec. 1992.
[70]C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey, Physics in Medicine and Biology, vol. 41, pp. 2231-2249, Dec. 1996.
[71]S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Physics in Medicine and Biology, vol. 41, pp. 2251-2269, Dec. 1996.
[72]S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol. 41, pp. 2271-2293, Dec. 1996.
[73]K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas, IEEE Trans. Microwave Theory and Technology. 50, no. 3, pp. 937-944, Mar. 2002.
[74]V. Radisic, Y. Qian, and T. Itoh, “Class F power amplifier integrated with circular sector microstrip antenna, IEEE MTT-S International Microwave Symposium, pp. 687-690, Jun. 1997.
[75]H. Kim, K. S. Hwang, K. Chang, and Y. J. Yoon, “Novel slot antennas for harmonic suppression, IEEE Microwave and Wireless Components. Letter, vol. 14, no. 6, pp. 286-288, Jun. 2004.
[76]S. M. Han, J. Y. Park, and T. Itoh, “Active integrated antenna based rectenna using the circular sector antenna with harmonic rejection, IEEE AP-S International Symposium, pp. 2522-3536, Jun. 2004.
[77]M. Ali, G. Yang, R. Dougal, “A new circularly polarized rectenna for wireless power transmission and data communication, IEEE Antennas and Wireless Propagation Letter, vol.4, pp. 205-208, Aug. 2005.
[78]T. C. Yo, C. M. Lee, C.M. Hsu, and C. H. Luo, “Compact circularly polarized rectenna with unbalanced circular slots, IEEE Transaction on Antennas Propagation, vol. 56, no. 3, pp. 882-886, Mar. 2008.
[79]M. Ali, G. Yang and R. Dougal, “Miniature circularly polarized rectenna with reduced out-of-band harmonics, IEEE Antennas and Wireless Propagation Letter, vol.5, pp. 107-110, Mar. 2006.
[80]Z. Harouni, L. Cirio, L. Osman, A. Gharsallah, O. Picon, “A dual circularly polarized 2.45-GHz rectenna for wireless power transmission, IEEE Antennas and Wireless Propagation Letter, vol. 10, pp. 306-309, May 2011.
[81]A. Georgiadis, G. Andia, and A. Collado, “Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting, IEEE AWPL, vol. 9, pp. 444-446, Oct. 2010.
[82]N. Kumprasert and W. Kiranon, “Simple and accurate formula for the resonant frequency of the circular microstrip disk antenna, IEEE Transaction on Antenna and Propagation, vol. 43, no. 11, pp. 1331-1333, Mar. 1995.
[83]C. L. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee, IEEE Wireless Communication, vol. 14, no. 4, pp. 70-78, Aug. 2007.
[84]Y. Pinto, C. Person, D. Gloria, A. Cathelin, D.Belot, S. Pruvost, R. Plana, 79 Ghz integrated antenna on low resistivity Si BiCMOS exploiting above-IC processing, European Conference on Antennas and Propagation, pp. 3539-3543, Mar. 2009.
[85]R. Pilard, S. Montusclat, D. Gloria, F. L. Pennec, C. Person, “Folded-slot integrated antenna array for millimeter-wave CMOS applications on standard HR SOI silicon substrate, IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 1-4, Jan. 2009.
[86]F. Gutierrez, S. Agarwal, K. Parrish, T. S. Rappaport, “On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems, IEEE Journal on Selected Areas in Communications, vol. 27, pp. 1367-1378, Dec. 2009.
[87]K. Zoschke, M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. J. Schmuckle, H. Reichl, “Fabrication of application specific integrated passive devices using wafer level packaging technologies, IEEE transaction on Advanced Packaging, vol. 30, no. 3, pp. 359-368, Aug. 2007.
[88]N. Michishita, H. Arai, M. Nakano, T. Satoh, and T. Matsuoka, “FDTD analysis for printed dipole antenna with balun, Asia-Pacific Microwave Conference, pp. 739-742, Dec. 2000.
[89]S. Hilton, C. J. Railton, G. J. Ball, A. L. Hume, and M. Dean, “Finite difference time-domain analysis of a printed dipole antenna, 9th International Conference on Antennas and Propagation Conference, vol. 1, pp. 72-75, Mar. 1995.
[90]H. R. Chuang and L. C. Kuo, “3-D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole-antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications, IEEE Transaction on Microwave Theory and Technology, vol. 51, no. 2, pp. 374-381, Feb. 2003.
[91]C. A. Balanis, “Antenna Theory and Design, 3rd ed. New York: Wiley, 2005, ch. 10.
[92]L. C. Kuo and H. R. Chuang, Y. C. Kan, T. C. Huang, C. H. Ko, “A study of planar printed dipole antennas for wireless communication applications, Joural of Electromagnetic Waves Application, vol. 21, no. 5, pp. 637-652, Jan. 2007.
[93]Picoprobe, Model 67A-GSG-150-P data sheet.
[94]O. McSpadden and K. Chang. “A dual polarized circular patch rectifying antenna at 2.45 GHz for microwave power conversion and detection, IEEE MTT-Symposium Digest, pp. 1749-1752, Mar. 1994.
[95]W. Rudge, K. Milne, A. D. Olver, and P. Knight, Eds., “The Handbook of Antenna Design, 2nd ed., vols. 1 and 2. Stevenage, U.K.: Peregrinus, pp. 647-648, 1986.
[96]A. Boe, M. Fryziel, N. Deparis, C. Loyez, N. Rolland, and P. A. Rolland, “Smart antenna based on RF MEMS switches and printed Yagi-Uda antennas for 60 GHz ad hoc WPAN, 36th European Microwave Conference, pp. 310-313, Sep. 2006.
[97]D. Neculoiu, G. Konstantinidis, L. Bary, D. Vasilache, A. Stavrinidis, Z. Hazopulos, A. Pantazis, R. Plana, and A. Muller, “Yagi-Uda antennas fabricated on thin GaAs membrane for millimeter wave applications, IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, pp. 418-421, Mar. 2005.
[98]Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip antennas for 60-GHz radios in silicon technology, IEEE Transaction on Electron Devices, vol. 52, pp. 1664-1668, Jul. 2005.
[99]S. S. Hsu, K. C. Wei, C. Y. Hsu, and H. R. Chuang, “A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-um CMOS technology, IEEE Electron Device Letter, vol. 29, pp. 625-627, Jun. 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top