跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮基倫
研究生(外文):Chi-LunFeng
論文名稱:適應性第二型模糊追蹤控制器設計於輪型機器人之研究
論文名稱(外文):Adaptive Type-2 Fuzzy Tracking Controller Design for Wheeled Mobile Robots
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:69
中文關鍵詞:適應性第二型模糊李亞普諾夫
外文關鍵詞:AdaptiveType-2 fuzzyLyapunov
相關次數:
  • 被引用被引用:3
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討追蹤控制器的設計,應用於非固執約束機械系統之輪型機器人。因前述系統具有不確定性與外在雜訊干擾,在此複雜情況下進行適應性追蹤控制器的設計研究。首先考慮非固執約束機械系統之輪型機器人,忽略其電樞動態設計方法以模糊邏輯為設計基礎的適應追蹤控制器推導。再者為本論文重點,考慮以電驅動的非固執約束機械系統之輪型機器人,設計方法以模糊邏輯為設計基礎且加入第二型模糊邏輯進行適應性追蹤控制器設計,控制器設計加入逆向步進技術進行推導設計,並使用李亞普諾夫定理來保證閉迴路系統的穩定度。最後進行模擬與實驗結果,可以展現適應性第二型模糊追蹤控制器控制之效能與強健性。
This thesis mainly confers the development of tracking controller design for wheeled mobile robots with plant uncertainties and external disturbances. This thesis proposes a unified and systematic procedure to design adaptive fuzzy tracking controllers for such system. At first an adaptive fuzzy tracking controller (AFTC) is designed for the nonholonomic constrained wheeled mobile robots without considering the model of DC motors. Furthermore, an AFTC and an adaptive type-2 fuzzy tracking controller (AT2FTC) are presented for wheeled mobile robots with the model of DC motors, where the backstepping techniques are adopted. The stability of closed-loop system and the convergence of the proposed tracking controllers are proved by using the Lyapunov and uniformly ultimately bounded stability theories. Finally, several simulation results of adaptive fuzzy tracking and adaptive type-2 fuzzy tracking controlled wheeled mobile robots are executed, where the AT2FTC provides the best tracking performance.
Abstract I
Acknowledgment III
Contents IV
List of Figures VI
List of Acronyms X
Nomenclature XI



Chapter 1. Introduction
1.1 Motivation 1
1.2 Thesis Organization 5

Chapter 2. Model Description of Wheeled Mobile Robots
2.1 Introduction 6
2.2 Mathematical Model Description of Wheeled Mobile Robots 7
2.3 Description of Fuzzy Logic Systems 11
2.4 Summary 12

Chapter 3. Adaptive Fuzzy Tracking Controller Design for Wheeled Mobile Robots
3.1 Introduction 13
3.2 Overview of Problem Formulation 14
3.3 Sliding Mode Control for Wheeled Mobile Robots 15
3.4 Design of Fuzzy Sliding Mode Controllers 17
3.5 Summary 22

Chapter 4. Adaptive Type-2 Fuzzy Tracking Controller Design for Wheeled Mobile Robots
4.1 Introduction 23
4.2 Overview of Problem Formulation 24
4.3 Design of Robust Position Feedback Tracking Controller 25
4.4 Design of Type-2 Fuzzy Logic Systems 27
4.5 Design of Integrator Backstepping Technique 29
4.6 Simulation Results 34
4.7 Summary 53

Chapter 5. Conclusions and Future Works
5.1 Conclusions 55
5.2 Future Works 56

References 57
Appendix 64



[1]A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control and stabilization of nonholonomic dynamic systems, IEEE Trans. Automatic Control, Vol. 37, No. 11, pp. 1746-1757, 1993.
[2]A. M. Bloch, “Stabilizability of nonholonomic control systems, Automatica, Vol. 28, No. 2, pp. 431-435, 1992.
[3]G. Campion, B. d'Andrea-Novel, and G. Bastin, “Controllability and state feedback stabilizability of nonholonomic mechanical systems, Advanced Robot Control, Editor by C. D. W. Canudas, New York, Springer-Verlay, Vol. 162, pp. 106-124, 1991.
[4]M. Sampei, T. Tamura, T. Kobayashi, and N. Shibui, “Arbitrary path tracking control of articulated vehicles using nonlinear control theory, IEEE Trans. on Control Systems Technology, Vol. 3, No. 1, pp. 125-131, 1995.
[5]J. J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.
[6]L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, NJ, 1997.
[7]L. A. Zadeh, “Outline of a new approach to the analysis of complex system and decision processes, IEEE Trans. on Systems Man and Cybernetics, Vol. 3, No. 1, pp. 28-44, 1973.
[8]Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding mode controllers with applications , IEEE Trans. Ind. Electron., Vol. 48, No. 1, pp. 38-46, 2001.
[9]B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear systems, IEEE Trans. Fuzzy Systems, Vol. 6, No. 2, pp. 315-321, 1998.
[10]F. C. Sun, Z. Q. Sun, and G. Feng, “Design of adaptive fuzzy sliding mode controller for robot manipulators, in Proc. 5th IEEE Int. Conf. Fuzzy Systems, Vol. 1, pp. 62-67, 1996
[11]C. C. Lee, “Fuzzy logic in controller systems: fuzzy logic control –Part I/II, IEEE Trans. on Systems Man Cybernet., Vol. 20, No. 2, pp. 404-435, 1990.
[12]J. Y. Hung, W. Gao, and J. C. Hang, “Variable structure control: a survey, IEEE Trans. Ind. Electron, Vol. 40, No.1, pp. 2-22, 1993.
[13]W. Gao and J. C. Hang, “Variable structure control of nonlinear systems: a new approach, IEEE Trans. Ind. Electron, Vol. 40, No. 1, pp. 45-55, 1993.
[14]I. Boiko and L. Fridman, “Analysis of chattering in continuous sliding-mode controllers, IEEE Trans. Systems Man Cybernet., Vol. 50, No. 9, pp. 1442-1446, 2005.
[15]C. Edwards and S. K. Spurgeon, Sliding mode control: theory and applications, Taylor and Francis Ltd, 1998.
[16]K. S. Yeung and Y. P. Chen, “A new controller design for manipulators using the theory of variable structure systems, IEEE Trans. Automatic Control, Vol. 33, No. 2, pp. 200-206, 1988.
[17]W. Wang, X. D. Liu, and J. Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems, IET Control Theory App, Vol. 1, No. 1, pp. 163-172, 2007.
[18]Y. Stepanenko, Y. Cao, and C. Y. Su, “Variable structure controller for robotic manipulator with PID sliding surfaces, Int. J. of Robust and Nonlinear Control, Vol. 8, No. 2, pp. 79-90, 1998.
[19]V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electromechanical systems, CRC Press LLC, 1999.
[20]K. K. D. Young, “Controller design of a manipulator using theory of variable structure systems, IEEE Trans. Systems Man Cybernet., Vol. 8, No. 2, pp. 101-109, 1978.
[21]S. Y. Yi and M. J. Chung, “Systematic design and stability analysis of a fuzzy logic controller, Fuzzy Sets and Systems, Vol. 72, No. 3, pp. 271-298, 1995.
[22]S. Y. Chen, F. M. Yu, and H. Y. Chung, “Decoupled fuzzy controller design with single-input fuzzy logic, Fuzzy Sets and Systems, Vol. 129, No.3, pp. 335-342, 2002.
[23]J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control, IEEE Trans. on Fuzzy Systems, Vol. 6, No. 3, pp. 426-435, 1998.
[24]O. Mendoza, P. Melin, and G. Licea, “A hybrid approach for image recognition combining type-2 fuzzy, modular neural networks and the Sugeno integral, Inf. Sci., Vol. 179, No. 13, pp. 2078-2101, 2009.
[25]B. I. Choi and F. C. H. Rhee, “Interval type-2 fuzzy membership function generation methods for pattern recognition, Inf. Sci., Vol. 179, No. 13, pp. 2102-2122, 2009.
[26]R. Martinez, O. Castiollo, and L. T. Anguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms, Inf. Sci., Vol. 179, No. 13, pp. 2158-2174, 2009.
[27]T. C. Lin, H. L. Liu, and M. J. Kuo, “Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems, ENG. Appl. Artif. Intell., Vol. 22, No. 3, pp. 420-430, 2009.
[28]M.Y. Hisao, S. H. Tsai, and T. H. S. Li, “The design of internal type-2 fuzzy kinematic control and interval type-2 fuzzy terminal sliding-mode dynamic control of the wheeled mobile robot, in Proc. IEEE International Conference on System, Man and Cybernetics, SMC 2009, pp. 1045-1050, 2009.
[29]F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulator, NEW YORK: Macmillan, 1993.
[30]N. Sarkar, X. Yun, and V. Kumar, “Control of mechanical systems with rolling constraints: application to dynamic control of mobile robots, Int. J. Robot. Res., Vol. 13, No. 1, pp. 55-69, 1994.
[31]R. Fierro and F.L. Lewis, “Control of a nonholonomic mobile robot using neural networks, IEEE Trans. On Neural Networks, Vol. 9, No. 4, pp. 589-600, 1998.
[32]J. Barraquand and J. C. Latombe, “Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles, in Proc. IEEE Int. Conf . Robot. Automat, Sacramento, CA, Vol. 3, pp. 2328-2335, 1991.
[33]Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile manipulator, Recent Trends in Mobile Robot, Ed. Singapore: World Scientific Trans, Vol. 3, pp. 157-181, 1993.
[34]C. M. Anupoju, C. Y. Su, and M. Oya, “ Robust Adaptive motion tracking control of uncertain nonholonomic mechanical systems including actuator dynamics, in Proceedings. ICRA '04. 2004 IEEE International Conference on Robotics and Automation, Vol. 4, pp. 3525-3530, 2004.
[35]Y. C. Chang and B. S. Chen, “Adaptive tracking control for nonholonomic caplygin systems, IEEE Trans. on Control Systems Technology, Vol. 10, No. 1, pp. 96-104, 2002.
[36]W. Dong, “On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty, Automatica, Vol. 38, No. 9, pp. 1475-1484, 2002.
[37]W. Dong, W. Huo, S. K. Tso, and W. L. Xu, “Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots, IEEE Trans. on Robotics and Automation, Vol. 16, No. 6, pp. 870-874, 2000.
[38]T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot, IEEE Trans. on Robotics and Automation, Vol. 16, No. 5, pp. 609-615, 2000.
[39]Z. Li, S. S. Ge, and A. Ming, “Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators, IEEE Trans. on Systems, Man, and Cybernetics- Part B: Cybernetics, Vol. 37, No. 3, pp. 607-616, 2007.
[40]J.A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, New York: Wiley, 2006.
[41]R. M. Sanner and J. J. E. Slotine, “Gaussian networks for direct adaptive control, IEEE Trans. on Neural Networks, Vol. 3, No. 6, pp. 837-863, 1992.
[42]R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks, in Proceedings of the 1995 IEEE International Symposium on Intelligent Control, pp.415-421, 1995.
[43]S. Bououden, S. Filali, and K. Kemih, “Adaptive fuzzy tracking control for unknown nonlinear systems, Int. J. of Innovative Computing, Information and Control, Vol. 6, No. 2, pp. 541-549, 2010.
[44]L. Yu, S.M. Fei, H. Zu, and X. Li, “Direct adaptive neural control with sliding mode method for a class of uncertain switched nonlinear systems, Int. J. of Innovative Computing, Information and Control, Vol. 6, No. 12, pp. 5609-5618, 2010.
[45]H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers, IEEE Computational Intelligence Magazine, Vol. 2, No. 1, pp. 30-43, 2007.
[46]J. M. Mendel, R. I. John, and F. L. Liu, “Interval type-2 fuzzy logic systems made simple, IEEE Trans. on Fuzzy System, Vol. 14, No. 6, pp. 808-821, 2006.
[47]M. Y. Hsiao, C. Y. Chen, and T. H. S. Li, “Interval type-2 adaptive fuzzy sliding-mode dynamic control design for wheeled mobile robots, Int. J. of Fuzzy Systems, Vol. 10, No. 4, pp. 268-275, 2008.
[48]Y. C. Chang, H. M. Yen, and M. F. Wu, “An intelligent robust tracking control for electrically driven robot systems, Int. J. of Systems Science, Vol. 39, No.5, pp. 497-511, 2008.
[49]Z. Li, S. S. Ge, M. Adams, and W. S. Wijesoma, “Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators, IEEE Trans. on Control Systems Technology, Vol. 16, No. 6, pp. 1308-1515, 2008.
[50]C. M. Anupoju, C. Y. Su, and M. Oya, “Adaptive motion tracking control of uncertain nonholonomic mechanical systems including actuator dynamics, IEE Proc. Control Theory and Applications, Vol. 152, No. 5, pp. 575-580, 2005.
[51]J. J. Rubio and W. Yu, “Stability analysis of nonlinear systems identification via delayed neural networks, IEEE Trans. on Circuits and Systems, Vol. 54, No. 2, pp. 161-165, 2007.
[52]C. Y. Li, S. C. Tong, and W. Wang, “Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems, Inf. Sci., Vol. 181, No. 11, pp. 2405-2421, 2011.
[53]S. C. Tong and Y. M. Li, “Fuzzy adaptive robust backstepping stabilization for SISO nonlinear systems with unknown virtual control direction, Inf. Sci., Vol. 180, No. 23, pp. 4619-4640, 2010.
[54]Q.L. Liang and J.M. Mendel, “Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. on Fuzzy Systems, Vol. 8, No. 5, pp. 535-550, 2000.
[55]J. Mendel, “Uncertainty, fuzzy logic and signal processing, Signal Processing, Vol. 80, No. 6, pp. 913-933, 2000.
[56]D. Wu and J. Mendel, “Enhanced Karnik-Mendel algorithms, IEEE Trans. on Fuzzy Systems, Vol. 17, No. 4, pp. 923-934, 2009.
[57]P. A. Ioannou and J. Sun, Robust Adaptive Control, Upper Saddle River, NJ: Prentice-Hall, Inc, 1996.
[58]J. J. Rubio and W. Yu, “A new discrete-time sliding-mode control with time-varying gain and neural identification, Int. J. of Control, Vol. 79, No. 4, pp. 338-348, 2006.
[59]Y. Guo and P. Y. Woo, “An adaptive fuzzy sliding mode controller for robotic manipulators, IEEE Trans. on Systems, Man, and Cybernetics- Part A: Systems and Humans, Vol. 33, No. 2, pp. 149-159, 2003.
[60]Y. C. Chang and B. S. Chen, “Intelligent robust tracking controls for both holonomic and nonholonomic constrained mechanical systems using only position measurements, IEEE Trans. on Fuzzy Systems, Vol. 13, No. 4, pp. 491-507, 2005.
[61]H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. on Fuzzy Systems, Vol. 12, No. 4, pp. 524-539,2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top