跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡烝銘
研究生(外文):Cheng-MingHu
論文名稱:全球導航衛星系統整數未定值搜尋之直接固定準則
論文名稱(外文):A Direct Fixing Criterion for GNSS Integer Ambiguity Search
指導教授:莊智清莊智清引用關係
指導教授(外文):Jyh-Ching Juang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:81
中文關鍵詞:全球導航衛星系統整數未定值整數最小平方
外文關鍵詞:GNSSInteger AmbiguityInteger Least-squares
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
整數未定值解算為高精度全球導航衛星系統定位之關鍵。此演算法則求解載波相位二次差量測方程式中之週波未定值至整數。當整數未定值解算至正確之整數值,定位精度可達到公分等級。在這十年內,歐盟之伽利略導航衛星系統與中國之北斗導航衛星系統將完成其系統建立。當愈來愈多導航衛星可供使用,整數未定值解算中的未知整數未定值其數目也隨之增加。整數未定值解算基本上包含兩個步驟,首先為低相關化未定值;其次為搜尋整數最小平方解。高維度整數未定值向量之低相關化與搜尋其計算耗時且可能導致無法滿足即時定位之需求。因此,本論文針對整數未定值之搜尋效率提升,提出直接固定準則用於判斷未定值是否可固定至其最近整數。當此準則成立時,整數最小平方解可直接求得而不需再進行整數搜尋。此外,於整數未定值之搜尋過程中,此直接固定準則亦可被採用來降低搜尋深度。最後,藉由靜態與動態相對定位實驗來驗證此準則之性能。
Integer ambiguity resolution is the key to high-precision Global Navigation Satellite System (GNSS) positioning. Cycle ambiguities in double-difference carrier phase measurement equations are resolved by the integer ambiguity resolution as integers. As the integer ambiguities are resolved to the correct integer values, centimeter-level accuracy can be achieved. For the next decade, European Union’s Galileo and China’s Beidou are going to complete their constellations. With more satellites becoming available, the number of unknown integer ambiguities in integer ambiguity resolution also increases. The integer ambiguity resolution typically involves two steps: the first is decorrelation of ambiguities and the second is search of the integer least-squares estimator. Processing the high-dimensional ambiguity vector in the both steps may be time-consuming and thus it cannot meet the real-time requirements. Therefore, aiming at the efficiency improvement of the integer ambiguity search, this thesis proposes a direct fixing criterion for determining whether the integer ambiguities can be fixed to their nearest integer values. As the criterion is met, the integer least-squares estimator can be directly obtained and thus the search will not be needed. Furthermore, the direct fixing criterion can be adopted into the ambiguity search process to reduce the depth of search. Finally, static and kinematic relative positioning experiments are performed to evaluate the proposed method.
摘要 I
Abstract II
Acknowledgements IV
Contents V
List of Tables VII
List of Figures VIII
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Literature Review 2
1.3. Contributions of the Thesis 3
1.4. Organization 3
Chapter 2. Fundamental of GNSS Positioning 5
2.1. Global Navigation Satellite System 5
2.2. GNSS Measurements and Error Sources 8
2.2.1. Code Phase Measurement 8
2.2.2. Carrier Phase Measurement 11
2.2.3. Error Sources 12
2.2.4. The Geometry-free/Geometry-based Measurement Equations 15
2.3. GNSS Relative Positioning Models 17
2.3.1. Single Difference Models 18
2.3.2. Double Difference Models 21
Chapter 3. Integer Ambiguity Resolution and Validation 25
3.1. Integer Ambiguity Resolution 25
3.1.1. Integer Estimation 29
3.1.2. LAMBDA Method 37
3.2. Integer Ambiguity Validation 42
3.2.1. Discrimination Tests 42
3.2.2. Probability of Correct Ambiguity Resolution 43
3.3. GLONASS Ambiguity Resolution 46
Chapter 4. Integer Ambiguity Direct Fixing 47
4.1. Direct Fixing Criterion 47
4.2. Direct Fixing Adopted in Ambiguity Search Process 58
Chapter 5. Experiment Results 64
5.1. Experiment Architecture 64
5.2. Static Positioning Experiment 65
5.3. Real-Time Kinematic Positioning Experiment 70
Chapter 6. Conclusions 75
6.1. Conclusions 75
6.2. Future Research 76
Reference 77
[1]G. Blewitt, “Carrier-phase Ambiguity Resolution for the Global Positioning System Applied to Baselines up to 2000 km, Journal of Geophysical Research, Vol. 94, No. B8, pp. 10187-10302, 1989.
[2]X. W. Chang, X. Yang, and T. Zhou, “MLAMBDA: A Modified LAMBDA Method for Integer Least-squares Estimation, Journal of Geodesy, Vol. 79, No. 9, pp. 552-565, 2005.
[3]D. Chen and G. Lachapelle, “A Comparison of the FASF and Least-squares Search Algorithms for On-the-fly Ambiguity Resolution, Navigation, Vol. 42, No. 2, pp. 371-390, 1995.
[4]H. J. Euler and B. Schaffrin, “On a Measure for the Discernibility Between Different Ambiguity Solutions in the Static-Kinematic GPS-Mode, IAG Symposia No. 107, Kinematic Systems in Geodesy, Surveying, and Remote Sensing, Springer-Verlag, New York, pp. 285-295, 1991.
[5]U. Fernández-Plazaola, T. M. Martín-Guerrero, J. T. Entrambasaguas-Muñoz, and M. Martín-Neira, “The Null Method Applied to GNSS Three-carrier Phase Ambiguity Resolution, Journal of Geodesy, Vol. 78, pp. 96-102, 2004.
[6]E. Frei and G. Beutler, “Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach (FARA): Theory and First Results, Manuscripta Geodaetica, pp. 325-356, 1990.
[7]E. W. Grafarend, “Mixed Integer-real Valued Adjustment (IRA) Problems, GPS Solutions, Vol. 4, No. 2, pp. 31-45, 2000.
[8]R. A. Harris, “Direct Resolution of Carrier-phase Ambiguity by Bridging the Wavelength Gap, ESA publication, 1997.
[9]A. Hassibi and S. Boyd, “Integer Parameter Estimation in Linear Models with Applications to GPS, IEEE Transactions on Signal Processing, Vol. 46, No. 11, pp. 2938-2952, 1998.
[10]R. Hatch, “Instantaneous Ambiguity Resolution, Proceedings of KIS’90, Banff, Canada, pp. 290-308, 1990.
[11]B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS – Global Navigation Satellite System. GPS, GLONASS, Galileo, and more, Springer-Verlag, 2008.
[12]S. Jazaeri, A. R. Amiri-Simkooei, and M. A. Sharifi, “Fast Integer Least-squares Estimation for GNSS High-dimensional Ambiguity Resolution Using Lattice Theory, Journal of Geodesy, Vol. 86, pp. 123-136, 2012.
[13]P. J. de Jonge and C. C. J. M. Tiberius, “The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects, Delft Geodetic Computing Centre LGR series, No. 12, Delft Geodetic Computing Center, 1996.
[14]P. Joosten, The LAMBDA Method: MATLAB Implementation (Version 2.1), Delft University of Technology, 2001.
[15]J. Jung, P. Enge, and B. Pervan, “Optimization of Cascade Integer Resolution with Three Civil GPS Frequencies, Proceedings of ION GPS 2000, Salt Lake City UT, pp. 2191-2200, 2000.
[16]D. Kim and R. B. Langley, “An Optimized Least-squares Technique for Improving Ambiguity Resolution Performance and Computational Efficiency, Proceedings of ION GPS 1999, Nashville TN, pp. 1579-1588, 1999.
[17]H. Landau and H. J. Euler, “On-the-fly Ambiguity Resolution for Precise Differential Positioning, Proceedings of ION GPS-1992, Albuquerque NM, pp. 607-613, 1992.
[18]L. T. Liu, H. T. Hsu, Y. Z. Zhu, and J. K. Ou, “A New Approach to GPS Ambiguity Decorrelation, Journal of Geodesy, Vol. 73, pp. 478-490, 1999.
[19]M. Mart´ın-Neira, M. Toledo, and A. Pelaez, “The Null Space Method for GPS Integer Ambiguity Resolution, Proceedings of DSNS’95, Bergen, Norway, No. 31, 1995.
[20]P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, Ganga-Jamuna Press, 2006.
[21]R. Ong, Reliability of Combined GPS/GLONASS Ambiguity Resolution, Mater Thesis, University of Calgary, 2010.
[22]P. J. G. Teunissen, “Least-squares Estimation of the Integer GPS Ambiguities, Invited lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China, 1993.
[23]P. J. G. Teunissen, “The Least-squares Ambiguity Decorrelation Adjustment: a Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, Vol. 70, pp. 65-82, 1995.
[24]P. J. G. Teunissen, “On the Integer Normal Distribution of the GPS Ambiguities, Artificial Satellites, Vol. 33, No. 2, pp. 49-64, 1998.
[25]P. J. G. Teunissen, “Success Probability of Integer GPS Ambiguity Rounding and Bootstrapping, Journal of Geodesy, Vol. 72, pp. 606–612, 1998.
[26]P. J. G. Teunissen, “An Optimality Property of the Integer Least-squares Estimator, Journal of Geodesy, Vol. 73, pp. 587-593, 1999.
[27]P. J. G. Teunissen, “ADOP Based Upperbounds for the Bootstrapped and the Least-squares Ambiguity Success Rates, Artificial Satellites, Vol. 35, No. 4, pp. 171-179, 2000.
[28]P. J. G. Teunissen, “An Invariant Upperbound for the GNSS Bootstrapped Ambiguity Success Rate, Journal of Global Positioning Systems, Vol. 2, No. 1, pp. 13-17, 2003.
[29]P. J. G. Teunissen, D. Odijk, and C. Jong, “Ambiguity Dilution of Precision: an Additional Tool for GPS Quality Control, LGR-Series, Delft Geodetic Computing Center, pp. 261-270, 2000.
[30]S. Verhagen, “On the Approximation of the Integer Least-squares Success Rate: Which Lower or Upper Bound to Use?, Journal of Global Positioning Systems, Vol. 2, No. 2, pp. 117-124, 2003.
[31]S. Verhagen, The GNSS Integer Ambiguities: Estimation and Validation, Ph. D Dissertation, Delft University of Technology, Nederland, 2005.
[32]S. Verhagen, “Reliable Positioning with the Next Generation Global Navigation Satellite Systems, in Proceedings of 3rd International Conference on Recent Advances in Space Technologies (RAST '07), pp. 618-623, Istanbul, Turkey, June 14-16, 2007.
[33]S. Verhagen and P. J. G. Teunissen, “New Global Navigation Satellite System Ambiguity Resolution Method Compared to Existing Approaches, Journal of Guidance, Control, and Dynamics, Vol. 29, No. 4, pp. 981-991, 2006.
[34]U. Vollath, S. Birnbach, H. Landau, J.M. Fraile-Ordoñez, and M. Martin-Neira, “Analysis of Three-Carrier Ambiguity Resolution (TCAR) Technique for Precise Relative Positioning in GNSS-2, Proceedings of ION GPS 1998, Nashville TN, pp. 417-426, 1998.
[35]P. Xu, “Random Simulation and GPS Decorrelation, Journal of Geodesy, Vol. 75, pp. 408-423, 2001.
[36]P. Xu, “Voronoi Cells, Probabilistic Bounds, and Hypothesis Testing in Mixed Integer Linear Models, IEEE Transactions on Information Theory, Vol. 52, No. 7, pp. 3122-3138, 2006.
[37]Y. Zhou, “A New Practical Approach to GNSS High-dimensional Ambiguity Decorrelation, GPS Solutions, Vol. 15, No. 4, pp. 325-331, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top