跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉宏
研究生(外文):Chia-HungLin
論文名稱:應用螞蟻演算法於模糊影像濾波器之設計
論文名稱(外文):Fuzzy Image Filter Design Using Ant Colony Optimization
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:53
中文關鍵詞:螞蟻演算法費洛蒙模糊影像濾波器
外文關鍵詞:Ant Colony Optimizationpheromonefuzzy image filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
數位影像容易受到雜訊影響,因此影像濾波器常被視成影像處理系統中的前置處理。若影像有嚴重損毀或高雜訊時,傳統的影像濾波器通常無法處理得很好。因此,本論文利用模糊系統可以容忍雜訊的優點,改善傳統的中值濾波器,再利用螞蟻演算法調整模糊影像濾波器的參數,期能使濾波器能夠達到較佳的性能。螞蟻演算法(Ant Colony Optimization)是利用螞蟻在搜尋食物時在路徑上所留下的費洛蒙(pheromone)濃度的高低所發展出來的最佳化方法,隨著時間的推進,長路徑的費洛蒙濃度較低,短路徑的費洛蒙濃度較高,費洛蒙濃度較高的路徑就會被選擇。螞蟻演算法包括費洛蒙濃度的計算、揮發係數的設定、狀態轉移概率的計算等等。除此之外,螞蟻演算法擁有全域與局部兩種搜尋方式,因此有多點搜尋、快速收斂的特性。本文係結合模糊濾波器與螞蟻演算法之特點,以改善整體影像品質,最後影像濾波結果顯示本文所提方法之有效性與可行性。
The digital images are easily affected by the noises; hence the image filters are often regarded as pre-processing of image processing system. If the image has serious damage or high-noise, the traditional image filters are usually unable to handle well. Therefore, this thesis utilizes the advantages of the fuzzy system to improve the traditional median filter, and then use ant colony optimization (ACO) algorithm to adjust the parameters of fuzzy image filter and make the filter to achieve better performance. ACO algorithm is an optimal method that developed from pheromones concentration level on the path. With the time past, the concentration of pheromones on the long path is lower, the concentration of pheromones of the short path is higher, then the shortest path will be selected. ACO algorithm includes the calculation of the pheromone concentration, the evaporation coefficient set, and the state transition probability calculation. In addition, ACO algorithm possesses the global and local search capability. Therefore, the ACO algorithm has the characteristics of muti-point search and fast convergence. This thesis combines the advantages of the fuzzy filter and ACO algorithm to improve the overall image quality. The final image filtering results demonstrate the effectiveness and feasibility of the proposed method.
Abstract (Chinese)Ⅰ
Abstract (English)Ⅱ
Acknowledgment Ⅲ
Contents Ⅳ
List of Figures V
List of Tables VII
Chapter 1. Introduction
1.1 Background of Research 1
1.2 Motivation 3
1.3 Thesis Organization 5
Chapter 2. Modified Fuzzy Multilevel Median Filter
2.1 Median Filter 6
2.2 Multilevel Median Filter 8
2.3 Fuzzy Multilevel Median Filter 10
2.4 Modified Fuzzy Multilevel Median Filter 12
Chapter 3. ACO Algorithm based Modified Fuzzy Multilevel Median Filter (MFMMF)
3.1 ACO Algorithm 19
3.2 Design of the MFMMF by ACO Algorithm 27
Chapter 4. Experimental Results 32
Chapter 5. Conclusions and Future Works
5.1 Conclusions 49
5.2 Future Works 50
References 51

[1]R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Education, Upper Saddle River, New Jersey, 2007.
[2]T. Chen and H. R. Wu, “Space variant median filters for the restoration of impulse noise corrupted images, IEEE Trans. on Circuits and Systems, Vol. 48, No. 8, pp. 784-789, Aug. 2001.
[3]J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering, Boca Raton, Fla., 1997.
[4]O. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation, IEEE Trans. on Signal Processing, Vol. 39, No. 2, pp. 395-410, Feb. 1991.
[5]S.-J. Ko and Y. H. Lee, “Center weighted median filters and their applications to image enhancement, IEEE Trans. on Circuits and Systems, Vol. 38, No. 9, pp. 984-993, Sep. 1991.
[6]T. Chen and H. R. Wu, “Adaptive impulse detection using center-weighted median filter, IEEE Signal Processing Lett., Vol. 8, No. 1, pp. 1-3, Jan. 2001.
[7]G. R. Arce and R. E. Roster, “Mulit-level Median filters: Properties and efficacy, in Proc. ICASSP, Vol. 2, pp. 824-826, New York, Apr. 1988.
[8]E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images, IEEE Trans. on Image Processing, Vol. 5, No. 6, pp. 1012-1025, June 1996.
[9]I. Andreadis and G. Louverdis, “Real-time adaptive image impulse noise suppression, IEEE Trans. on Instrumentation and Measurement, Vol. 53, No. 3, pp. 798-806, June 2004.
[10]T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for image denoising, IEEE Trans. on Image Processing, Vol. 8, No. 12, pp. 1834-1838, Dec. 1999.
[11]V. Crnojevic, V. Senk, and Z. Trpovski, “Advance impulse detection based on pixel-wise MAD, IEEE Signal Processing Letters, Vol. 11, No. 7, pp. 589-592, July 2004.
[12]Z.M., Kovacs-Vajna, “A fingerprint verification system based on triangular matching and dynamic time warping, IEEE Transactions Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1266 - 1276, 2000.
[13]Y. Nara, J. Yang, and Y. Suematsu, “Face Recognition Using Improved Principal Component Analysis, in Proc. IEEE International Symposium on Micromechatronics and Human Science, pp. 77- 82, 2003.
[14]O. Javed and M. Shah, “Tracking and object classification for automated surveillance, in Proc. European Conf. Computer Vision, pp. 343–357, 2002.
[15]G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Application, Prentice Hall Press, Upper Saddle River, NJ, 1995.
[16]M. Dorigo and T. Stutzle, Ant Colony Optimization, MIT Press, 2004.
[17]X. Yang and P. S. Toh, “Adaptive Fuzzy Multilevel Median Filter, IEEE Trans. on Image Processing, Vol. 4, No. 5, pp. 680-682, 1995.
[18]P. Li, G. Wu, H. Bai and J. Shen, “Improved PSO algorithm and its application in optimal design for Rectifier Transformer, in Proc. of IEEE Int. Conf. on Intelligent Computing and Integrated Systems, pp. 605-608, 2010.
[19]M. Dorig and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66, 1997.
[20]V. Maniezzo and A. Colorni, “The ant system applied to the quadratic assignment problem, IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 5 pp. 769-778, 1999.
[21]A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant system for job-shop scheduling, Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL), Vol. 34, No 1, pp. 39-53, 1994.
[22]J. Chang, Y. Zhao, and C. Wei, “Research on optimization of fuzzy membership function based on ant colony algorithm, in Proc. The 25th Chinese Control Conference, pp. 7-11, Aug. 2006.
[23]T. P. Hong, C. H. Chen, Y. L. Wu, and Y. C. Lee, “A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functions, Soft Computing-A Fusion of Foundations, Methodologies and Applications, Vol. 10, No. 11, pp. 1091-1101, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊