跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬英林
研究生(外文):Ying-LinMa
論文名稱:整合仿射轉換與眼鏡弱化法於人臉辨識系統
論文名稱(外文):Integration of Affine Transformation and Eyeglasses Reduction for Facial Recognition System
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li*
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:52
中文關鍵詞:人臉辨識仿射轉換眼鏡弱化
外文關鍵詞:Face recognitionAffine TransformationEyeglasses reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
個人的身分識別系統已有各種研究及發展,如要達到最自然性及便利非接觸性還是以人臉辨識為最佳的方法,但人臉辨識的準確率會因為非正臉或臉部特徵受眼鏡的遮蔽時產生的反光與陰影,而嚴重影響到辨識率。故本論文提出一個整合仿射轉換( Affine Transformation )與眼鏡弱化(Eyeglasses Reduction)的方法,利用眼鏡對稱的特性及影像形態學的操作發展出一套眼鏡弱化的方法,在沒有樣本訓練的情況下,不須手動建立眼鏡外框模型,也可以得到不錯的效果。
利用仿射轉換將人臉正規化及眼鏡弱化法去除遮蔽人臉特徵的眼鏡,可有效改善當非正臉或配戴眼鏡時所造成的人臉辨識錯誤。結合索貝爾邊緣偵測( Sobel Edge Detector )演算法計算人臉的邊緣影像,利用人臉特徵正交投影係數計算歐式距離( Euclidean distance )比對辨識結果。並使用奧立維特實驗室( Olivetti Research Lab, ORL )的人臉資料庫,驗證本文提出的方法可有效及可行的提昇人臉辨識成功率。
Personal identity system has a variety of researches and developments, while face recognition is one of the best ways to achieve the most natural, convenient and non-contact method. Face recognition accuracy is easily affected by the tilted face or reflective and shadow from eyeglasses on facial features. In this thesis, an integrated affine transformation and eyeglasses reduction method have been proposed, where affine transformation method makes tilted face into normal one and eyeglasses reduction method is realized by eyeglasses symmetrical features and image morphology operations. In recognition stage, sobel edge detection algorithm is first adopted to calculate the edge of the face image, and then figure out orthogonal projection coefficient of facial feature and its similarity measure by using Euclidean distance.
ORL (Olivetti Research Lab.) database is utilized to verify the proposed method. Face image normalization by affine transformation and eyeglasses reduction is effective in improving the error of face recognition that caused by the tilted face or worn eyeglasses. Good results are presented without sample training or manually creating eyeglasses frame models.
中文摘要 Ⅰ
Abstract Ⅱ
Acknowledgment Ⅲ
Contents Ⅳ
List of Figures Ⅵ
List of Tables Ⅷ

Chapter 1. Introduction
1.1 Motivation................................1
1.2 Previous work.............................2
1.3 Thesis organization.......................3
Chapter 2. Affine Transformation for Tilt Face
2.1 Introduction..............................4
2.2 Localization of facial features...........5
2.3 Affine transformation....................11
2.4 Simulation results.......................14
2.5 Summary..................................18
Chapter 3. The Method of Eyeglasses Reduction
3.1 Introduction.............................19
3.2 Overview of edge detector................20
3.3 Overview of morphology...................25
3.4 Simulation results.......................27
3.5 Summary..................................34
Chapter 4. The Experiment of Face Recognition
4.1 Introduction.............................35
4.2 Orthogonal projection....................36
4.3 Decision making of face recognition......39
4.4 The experiments of face recognition......42
Chapter 5. Conclusions and Future Works
5.1 Conclusions..............................48
5.2 Future Works.............................49
References...........................................50

[1] AT&T Laboratories, Cambridge, U.K. The ORL Database of Faces [Online]. Available: http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.zip.
[2] A. Samaland P. Iyengar, “Automatic recognition and analysis of human faces and facial expressions: A Surey, Pattern Recognition, Vol. 25, No. 1, pp.65-77, 1992.
[3] B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for Object Representation, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, No. 7, pp. 696-710, 1997.
[4] W. Zhao and Nandhakumar N., “Linear discriminant analysis of MPF for face recognition, in Proc. 14th Int. Conf. on Pattern Recognition, Vol. 1, Aug. 16-20, 1998, pp.185-188.
[5] V. E. Lizama, D. Waldoestl, and B. Nickolay, “An eigenfaces-based automatic face recognition system, in Proc. IEEE Int. Conf. on Computational Cybernetics and Simulation, Vol. 1, Oct. 12-15, 1997, pp. 174-177.
[6] C. Liu, and Wechsler H., “Enhanced Fisher linear discriminant models for face recognition, in Proc. IEEE Int. Conf. on Pattern Recognition, Vol. 2, 1998, pp. 1368-1372.
[7] W. S. Lee, H.J. Lee, and J.H. Chung, “Wavelet-based FLD for face recognition, in Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, Vol. 2, Aug. 8-11, 2000, pp. 734-737.
[8] M. A. Turk and A. P. Pentland, Face recognition using eigenfaces, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 3-6, 1991, pp. 586-591.
[9] W. Zhao and N. Nandhakumar, “Linear discriminant analysis of MPF for face recognition, in Proc. 14th Int. Conf. on Pattern Recognition, Vol. 1, Aug. 16-20, 1998, pp. 185-188.
[10] H. T. Lin, Implementation of A Face Recognition System Based on The Fisherface Algorithm, Master Thesis, Elect. and Con. Eng. Dept., National Chiao Tung Univ., Taiwan, 2001.
[11] S. Han, G. Pan, and Z. Wu “Human face orientation detection using power spectrum based measurements, in Proc. Sixth IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 791 - 796, 2004.
[12] W. Cao, H. Feng, G. Xiao, Y. Gu, and S. Wang, Study of an algorithm for face pose adjustment based on eye location, in Proc. Fifth IEEE Int. Conf. Intelligent Control and Automation, Vol. 5, pp. 4190 - 4194, 2004.
[13] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, scale, and translation resilient watermarking for images, IEEE Transactions on Image Processing, Vol. 10, No. 5, pp. 767-782.
[14] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least square fitting of two 3-d point sets, IEEE Trans. Patt. Anal. Machine Intell., Vol. pami-9, No. 5, pp.698 - 700, 1987.
[15] O. Camara, G. Delso, O. Colliot, A. Moreno-Ingelmo, and I. Bloch, “Explicit incorporation of prior anatomical information into a nonrigid registration of thoracic and abdominal CT and 18-FDG whole-body emission PET images, IEEE Trans. Medical Imaging, Vol. 26, No. 2, pp. 164-178, Feb. 2007.
[16] X. Chen, J. Yang, J. Zhang, and A. Waibel, “Automatic detection of signs with affine transformation, in Proc. 6th IEEE Workshop Conf. Applications of Computer Vision, pp. 32 – 36, Dec. 2002.
[17] N. Desikachari and R. M. Haralick, “Recursive binary dilation and erosion using digital line structuring elements in arbitrary orientations, IEEE Trans. Image Processing, Vol. 9, No. 5, pp. 749 – 759, May, 2000.
[18] S. Chen and R. M. Haralick, “Recursive erosion, dilation, opening, and closing transforms, IEEE Trans. Image Processing, Vol. 4, No. 3, pp. 335 – 345, March, 1995.
[19] J. Gil and R. Kimmel, “Efficient dilation, erosion, opening, and closing algorithms, IEEE Trans. Patt. Anal. Machine Intell., Vol. 24, No. 12, pp. 1606-1617, Dec, 2002.
[20] Z. Jing and R. Mariani, “Glasses Detection and Extraction by Deformable Contour, in Proceedings of International Conference on Pattern Recognition, pp. 933-936, 2000.
[21] D. S. Moors and J. W. Yackel, “Large Sample Properties of Nearest Neighbor Density Function Estimators, in Statistical Decision Theory and Related Topics, Academic Press, New York, pp. 269-279, 1976.
[22] B. V. Dasarathy, “Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, CA, 1990.
[23] P. Marasamy and S. Sumathi, “Automatic Recognition and Analysis of Human Faces and Facial Expression by LDA Using Wavelet Transform, in Proc. IEEE Conf. on Computer Communication and Informatics, pp. 10-12, 2012.
[24] R. Chellappa, C. Wilson, and S. Sirohey, “Human and Machine Recognition of Faces: A Survey, Proceedings of IEEE, Vol. 83, No. 5, pp. 705-740, 1995.
[25] J.-H. Jang, L.-W. Tsai, and K.-C. Fan, “Improvement of Face Recognition by Eyeglasses Removal, in Proc. IEEE Conf. on Intelligent Information Hiding and Multimedia Signal Processing, pp. 228-231, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top