跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:池芳儀
研究生(外文):Fang-IChih
論文名稱:電鍍銅銦鎵硒薄膜之成長與特性分析
論文名稱(外文):Growth and characterization of CIGS thin films electrodeposition
指導教授:李文熙
指導教授(外文):Wen-Hsi Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:銅銦鎵硒分層電鍍共電鍍三乙醇胺
外文關鍵詞:Cu(InGa)Se2Stack layer electrodeposiotionCo-electrodepositiontriethanolamine(TEA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用電鍍製程在室溫下製備Cu(In,Ga)Se2薄膜,除了在不同基板、添加不同的錯合劑進行電化學系統的基礎分析之外,藉由分層電鍍以及共電鍍這兩種方式沉積接近理想化學組成之Cu(In,Ga)Se2薄膜。
  在分層電鍍實驗中,針對Cu-Ga溶液於鉬基板(Mo substrate)、CIS、退火後CIS上進行循環伏安法分析,接著添加檸檬酸鈉或三乙醇胺(trithanolamine, TEA)作為錯合劑進行實驗,並在鍍膜後輔以SEM、EDS、XRD等薄膜分析。實驗結果發現,在Cu-Ga溶液中添加不同濃度的檸檬酸鈉作為錯合劑時,Ga元素的原子百分比最高可以達到12.7%;而以TEA作為錯合劑時,施加不同電流後,則使得Ga的比例達到20%以上,其原因可能來自於,檸檬酸鈉與TEA雖然都具有錯合銅的效果,然而根據文獻指出,TEA還具有增加薄膜平整度以及附著性的功能。最後將Cu-Ga薄膜與CuInSe2薄膜疊層並進行退火形成Cu(In,Ga)Se2。
  在共電鍍Cu(In,Ga)Se2薄膜的實驗中,溶液添加TEA作為錯合劑進行循環伏安法分析,再對溶液施加不同的電流電鍍,最後利用高溫熱處理形成Cu(In,Ga)Se2薄膜。為了改善薄膜的均勻性與結晶性,接著討論了溶液、基板加熱,以及不同的退火溫度對Cu(In,Ga)Se2薄膜的影響。實驗結果顯示,在添加TEA作為錯合劑後,配合適當的電壓以及熱處理的溫度,可將Ga的含量提升至5%至9%,而使用加熱電鍍的方式不僅可以改善膜面的平整度,在施以相同的電流可得到更多Ga元素的沉積。
  在電鍍的過程中,利用SEM、EDS、XRD、Raman spectroscopy等分析方法,幫助分析觀察Cu(In,Ga)Se2薄膜之晶體結構、表面形貌、化學組成等變化,並探討Cu(In,Ga)Se2薄膜產生變化的原因。
關鍵字:銅銦鎵硒;分層電鍍;共電鍍;三乙醇胺

This thesis focus on the by layered plating and the co-electrodeposition of stoichiometric Cu(In,Ga)Se2 thin films, and the electrochemical study at different substrate, adding the complexing agent has been presented.
In the by layered structure, cyclic voltammegram was utilized to examine the reaction potential of the ions in the Cu-Ga solution on CIS, CIS after annealing, and Mo substrate. Afterwards, We add Na-citrate or triethanolamine as complexing agent, and the analytical instrumentations of SEM, EDS, and XRD are applied to characterize the Cu-Ga thin films. Results showed that the use of complexing agent can reach gallium atomic percentage up to 20%. Then, the electrodeposition of Cu-Ga and CuInSe2 with layer by layer structure were fabricated, and formed Cu(In,Ga)Se2 after annealing.
In the co-electrodeposition experiment, we add TEA as a complexing agent. For better insight of the mechanism, a cyclic voltammetric study were also performed on Mo substrates. Based on this mechanism, Cu(In,Ga)Se2 thin films were able to be formed. In order to improve the uniformity and the crystallinity of the films, we discuss the heating process of solution and substrate , as well as different annealing temperature on the Cu(In,Ga)Se2 thin films. Results show that, adding TEA as a complexing agent, with the appropriate voltage and thermal annealing temperature, can increase Ga atomic percentage from 5% to 9%, furthermore, the use of heating process could not only improve the uniformity of the membrane surface, subjected to the same current, the content of Ga increased.
XRD was used to identify the as-deposited film as the quaternary chalcopyrite compound while composition and morphology were characterized by EDS and SEM, respectively. In the electrodeposition process, the above analysis methods help us to observe changes in the crystal structure, surface morphology, chemical composition of Cu(In,Ga)Se2 thin films, and to explore the reasons for the changes.

Key word: Cu(In,Ga)Se2; Stack layer electrodeposiotion; Co-electrodeposition; triethanolamine(TEA)

第一章 緒論 1
1-1. 前言 1
1-2. 太陽能電池介紹 1
1-3. Cu(In,Ga)Se2薄膜太陽能電池之發展與演進 5
1-4. Cu(In,Ga)Se2薄膜之主要製程 5
1-5. 實驗動機與目的 8
第二章 原理與文獻回顧 10
2-1. 太陽電池工作原理[21] 10
2-2. Cu(In,Ga)Se2四元化合物之材料特性 15
2-3. 電鍍製程原理 18
2-3-1. 電化學沉積過程[30] 18
2-3-2. 基本電鍍系統的組成 18
2-3-3. 電鍍薄膜的成長機制[33][34] 20
2-4. 影響電鍍製程之因素 23
2-5. 循環伏安法與氧化還原電位 24
2-6. 錯合劑(Complexing agent) 26
2-7. 電鍍Cu(In,Ga)Se2薄膜[51] 27
第三章 實驗方法與步驟 31
3-1. 實驗材料 31
3-2. 實驗設備 32
3-2-1. 恆電位儀 32
3-2-2. 薄膜濺鍍系統(Sputtering System) 33
3-2-3. 磁石攪拌平台 35
3-2-4. 高溫爐(Furnace) 35
3-3. 實驗流程 36
3-3-1. Mo基板製作 37
3-3-2. 溶液的配製 37
3-3-3. 電化學分析 38
3-3-4. 電鍍Cu(In,Ga)Se2薄膜 39
3-3-5. 電鍍參數調變 39
3-3-6. 熱退火處理 39
3-4. 鍍層分析儀器 40
3-4-1. 四點探針(Four point probe) 40
3-4-2. 掃描式電子顯微鏡(Scanning Electron Microscope)[68] 41
3-4-3. 能量分散光譜儀(Energy Dispersive Spectroscopy)[68] 42
3-4-4. X-Ray粉末繞射儀(Powder X-ray Diffraction)[69] 42
3-4-5. 拉曼光譜儀(Raman Spectroscopy)[68] 43
第四章 結果與討論 45
4-1. 電鍍Cu-Ga溶液之電化學特性探討 46
4-1-1. 電鍍Cu-Ga溶液於Mo基板上之電化學特性探討 46
4-1-2. 電鍍Cu-Ga溶液於CIS上之電化學特性探討 50
4-1-3. 電鍍Cu-Ga溶液於退火後CIS上之電化學特性探討 52
4-1-4. 電鍍溶液添加檸檬酸鈉(Na-citrate)之電化學特性探討 57
4-1-5. 電鍍溶液添加三乙醇胺(trithanolamine, TEA)之電化學特性探討 60
4-2. 分層電鍍CIGS薄膜 63
4-2-1. 電鍍CIS薄膜分析 63
4-2-2. 分層電鍍中添加檸檬酸鈉於Cu-Ga溶液 67
4-2-3. 分層電鍍中添加TEA於Cu-Ga溶液 73
4-3. 共電鍍CIGS薄膜 85
4-3-1. CIGS薄膜電化學分析 85
4-3-2. 共電鍍CIGS薄膜分析 88
4-3-3. 加熱電鍍對CIGS薄膜的影響 94
4-3-4. 改變熱退火溫度對共電鍍CIGS的影響 101
第五章 結論 107
參考資料 109


1.莊家琛, 太陽能工程-太陽電池篇, p.7-2至p.7-3., 全華科技圖書, 2006.
2.Jeffery L. Gray, Handbook of photovoltaic since and Engineering, A Luque and S. Hegedus, John Wiley &Sons, chap. 3, 2003.
3.http://www.kson.com.tw/chinese/study_23-6.htm
4.Karsten Otte, Liudmila Makhova, Alexander Braun, IgorKonovalov, Thin Solid Films, 511-512: p. 613-622, 2006.
5.G.M. Hanket, U.P.S., E. Eser, W. N.ShaFaran, R. W. Birkmire, Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, 567, 2002.
6.Mitchell, K.W., et al., CuInSe2 cells and modules, IEEE transaction on electron devices, 37, 410-417, 1990.
7.Dimmler, B., M. Powalla, and H.W. Schock, CIS-based thin film photovoltaic modules: Potential and prospects. Prog. Photovoltaic: Res. Appl., 10, 149-157, 2002
8.Chu, N. and D. Honeyman, Solar cells, 31, 197, 1991.
9.新能源材料 p.38, 陳軍, 袁堂華, 五南, 2008.
10.R. A. Mickelsen, Wen S. Chen, Y Roger Hsiao, Virginia E. Lowe, IEEE Trans, Electron Device, vol. ED-31, p. 542, 1984.
11.R. A. Mickelsen, Wen S. Chen, Material Research Society, p.39-47, 1987.
12.Andrew M. Gabor, John R. Tuttle, David S. Albin, Miguel A.Contreras, Rommel Noufi, Allen M. Hermann, Appl. Phys. Lett., vol. 65, p. 198, 1994.
13.J. AbuShama, R. Noufi, and S. Johnston, DOE Solar Energy Technologies Program Review Meeting, 2004.
14.R. A. Mickelsen, Wen S. Chen, Appl. Phys. Lett., vol. 36, No. 5, pp. 371-373, 1980.
15.S. P. Grindle, A. H. Clark, S. Rezaie-Serej, J. Mcneily, L. L.Mcneily, Journal of Applied Physics, 51:p. 10, 1980.
16.B. Pamplin, R.S. Feigelson, Thin Solid Films, vol. 60, pp. 144, 1979.
17.N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, L. Zanotti, Solar Cells, vol. 16, pp. 155-164, 1986.
18.D. Pottier and G. Maurin, J. Appl. Electrochem., 19:p.361, 1989.
19.Raghu N. Bhattacharya, A.M.F., Solar Energy Materials & Solar Cells, 76: p. 331- 337, 2003.
20.A . Kampmann, V. S. , J. Rechid, R . Reineke-Koch, Thin Solid Films, 361-362: p.309-313., 2000.
21.林明獻, 太陽電池入門技術, 2nd ed., 全華圖書股份有限公司, 2008.
22.Adolf Goetzberger, Christopher Hebling, Photovoltaic materials, past, present, future, Solar Energy Materials & Solar Cells, 62, 1(2000)
23.L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Thin Solid Films, 515,5891 (2007)
24.R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, U. Rqhle, Thin Solid Films, 480–481, 509(2005)
25.邱秋燕,廖曰淳,楊慕震,黃渼雯,羅一玲,銅銦鎵硒太陽電池-非真空製程技術發展簡介,工業材料雜誌,264, (2008)
26.J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, Journal of Applied Physics, 87, 3683 (2000)
27.N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Thin Solid Films , 472, 212 (2005)
28.M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C. Lux-Steiner, and Ch.-H.Fischer, T.P.Niesen, F.Karg, J. Appl. Phys., 7, 3858 (2004)
29.Marudachalam et al. J. Appl. Phys., Vol. 82, No. 6, 15 September 1997.
30.胡啟章, 電化學原理與方法, 1st ed. (五南圖書出版, 台北, 2002)
31.M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2nd ed. ( Wiley, New Jersey, 2006)
32.賴耿陽, 實用電鍍技術全集, 復漢出版社, 1981
33.Milan Paunovic, Mordechay Schlesinger, Fundamentals of Electrochemical Deposition, Electrochemical Society ,1998
34.W. J. Lorenz, G. Staikov, Journal of Applied Electrochemistry, 28, 5: p. 564- 565, 1998.
35.Orna, Mary Virginia; Stock, John (1989). Electrochemistry, past and present. Columbus, OH: American Chemical Society
36.Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York) Vanýsek, Petr (2007).
37.“Electrochemical Series, in Handbook of Chemistry and Physics: 88thEdition (Chemical Rubber Company).
38.F. Chraibi, M. Fahoume, A. Ennaoui, J.L. Delplancke, Phys. Stat. Sol. 186 (2001) 373–381.
39.Jun Liu, Fangyang Liu, Yanqing Lai, Zhian Zhang, Jie Li, Yexiang Liu, Journal of Electroanalytical Chemistry 651 (2011) 191–196
40.T.J. Whang, M.T. Hsieh, Y.Ch. Kao, Sh.J. Lee, Appl. Surf. Sci. 255 (2009) 4600–4605.
41.T. Yukawa, K. Koumoto, K. Kuwabara, Thin Solid Films 280 (1996) 160
42.R. Ugarte, R. Schrebler, R. Cordova, E.A. Dalchiele, H. Gomez, Thin Solid Films 340 (1999) 117–124.
43.M. Kemell, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavaara, E. Rauhala, J. Electrochem. Soc. 147 (2000) 1080–1087.
44.S. Beyhan, S. Suzer, F. Kadırgan, Sol. Energy Mater. Sol. Cells 91 (2007) 1922–1926.
45.L. Thouin, S. Rouquette-Sanchez, and J. Vedel, 10th Europ. Photovoltaic Solar Energy Conf., Lisbon (Portugal), 1991 (p. 893).
46.A.E.Martell and R. M. Smith, Vol.5:First Supplememt, Plenum press, New York, p.118(1982)
47.D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Solar Energy 77 (2004) 725–737
48.R.N.Bhattacharya, J. Electrochem. Soc., vol. 130, p. 2041, 1983.
49.Kapur, V.J., Basol, B.M., Tseng, E.S., 1987. Preparation of thin films of chalcopyrites for photovoltaics. In: Hwang, H.L., et al. (Eds.), Proceedings Seventh International Conf. Ternary and Multinary Compounds, pp. 219–224.
50.Prosini, P.P., Addonizio, M.L., Antonaia, A., Loreti, S., Thin Solid Films 288, 90–94., 1996.
51.Thouin, L., Rouquette-Sanchez, S., Vedel, J., Electrochim. Acta 38, 2387–2394, 1993.
52.Bhattacharya, R.N., Wiesner, H., Berens, T.A., Matson, R.J., Keane, J., Ramanathan, K., Swartzlander, A., Mason, A., Noufi, R.N., J. Electrochem. Soc. 144, 1376–1379.
53.Friedfeld, R., Raffaelle, R.P., Mantovani, J.G., Solar Energy Mater. Solar Cells 58, 375–385, 1999.
54.Bhattacharya, R.N., Fernandez, A.M., Solar Energy Mater. Solar Cells 76, 331–337, 2003.
55.M. Estela Calixto, Kevin D. Dobson,Brian E. McCandless, and Robert W. Birkmire Journal of The Electrochemical Society, 153 (6) G521-G528 (2006)
56.L. Ribeaucourt, et al., Electrochemical study of one-step electrodeposition of copper–indium–gallium alloys in acidic conditions as precursor layers for Cu(In,Ga)Se2 thin film solar cells, Electrochim. Acta (2011), doi: 10.1016/j.electacta.2011.05.033
57.Vishakha N. Dhanwate and N. B. Chaure, Applied Nanoscience(2012), doi:10.1007/s13204-012-0063-2
58.w. liu, y. sun, w. li, c.-j. li, f.-y. li, j.-g. tian, Appl. Phys. A 88, 653–656 (2007)
59.Guan-Ting Pan, M.-H.Lai, Solar EnergyMaterials&SolarCells94(2010)1790–1796.
60.F.I. Ezema, R.U. Osuji, J. Appl. Sci. 6 (2006) 1827–1832.
61.M. Steichen, et al., Thin Solid Films (2011), doi:10.1016/j.tsf.2011.01.135
62.Yanqing Lai, Fangyang Liu, Zhian Zhang, Jun Liu, Yi Li, Sanshuang Kuang, Jie Li, Yexiang Liu, Electrochimica Acta 54 (2009) 3004–3010.
63. Josiah Jebaraj J. Muthuraj,a Don H. Rasmussen,a,b and Ian I. Sunia Journal of The Electrochemical Society, 158 (2) D54-D56 (2011)
64.M.P.R. Panicker, M. Knaster and F.A.Kroger. 1978 J.Electrochem.soc.125 p.566.
65.D. Braunger, D. Hariskos, G. Bilger, U. Rau and H.W. Schock, Thin Solid Films, 361, 161(2000)
66.O. Roussel, O. Ramdani, E. Chassaing, P.P. Grand, M. Lamirand, A. Etcheberry, O. Kerrec, J.F. Guillemoles, and D. Lincota, Journal of The Electrochemical Society, 155, D141 (2008)
67.D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, (McGraw-Hill, New York, USA, 1995)
68.汪建民,材料分析,1st ed.(中國材料科學學會,新竹,1998)
69.林麗娟, X光繞射原理及其運用, 工業材料, 86, 101(1994)
70.I. Dirnstorfer et al. Thin Solid Films 361-362 (2000) 400-405
71.R.P. Raffaelle, J.G. Mantovani, and R. Friedfeld, Solar Energy Materials and Solar Cells, vol. 46, pp. 201-208, 1997
72.R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, and R.N. Noufi, Solar Energy Materials and Solar Cells, vol. 55, pp. 84-94, 1998
73.M.E. Calixto, and P.J. Sebastian, Journal of Materials Science, vol. 33, pp. 339-345, 1998
74.H. Tanino, T. Maeda, H. Fujikake, H. Nakanishi, S. Endo, T.Irie, Raman spectra of CuInSe2, Phys. Rev. B 1 (23), p1323 – 1325, 1992
75.H. Tanino, T. Maeda, H. Fujikake, H. Nakanishi, S. Endo and T. Irie “Raman spectra of CuInSe2 PHYSICAL REVIEW B Vol.45, NUMBER 23, 1992
76.J. Łaz ˙ewski, H. Neumann, K. Parlinski, G. Lippold, B. J. Stanbery “Lattice dynamics of CuAu-ordered CuInSe2 PHYSICAL REVIEW B 68, 144108, 2003
77.E. Ahmed, A. E. Hill, R. D. Pilkington, R. D. Tomlinson, J. Leppavuori, J. Levoska, O. Kusmartseva, W. Ahmed, A. Afzal, Journal of Materials Science, vol. 32, p5611–5613, 1997
78.S. Roy, P. Guha, S.N. Kundu, H. Hanzawa, S. Chaudhuri, A.K. Pal, Materials Chemistry and Physics 73 (2002) 24–30
79.J. Łaz ˙ewski, H. Neumann, K. Parlinski, G. Lippold, B. J. Stanbery, physical review b 68, 144108, 2003
80.SeJin Ahn, ChaeWoong Kim, JaeHo Yun, JeongChul Lee, KyungHoon Yoon, Solar Energy Materials & Solar Cells 91 (2007) 1836–1841
81.Soon Hyung Kang, Yu-Kyung Kim, Don-Soo Choi, Yung-Eun Sung, Electrochimica Acta, 51, 4433 (2006)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top