跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳長穎
研究生(外文):Chang-YingWu
論文名稱:具耦合電感之新型高轉換比雙向直流-直流轉換器
論文名稱(外文):A Novel High Conversion Ratio Bidirectional DC-DC Converter with Coupled-Inductor
指導教授:陳建富陳建富引用關係
指導教授(外文):Jiann-Fuh Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:72
中文關鍵詞:高轉換比雙向耦合電感
外文關鍵詞:High conversion ratiobidirectionalcoupled-inductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一具耦合電感之新型高轉換比雙向直流-直流轉換器,利用耦合電感於開關切換時二次側極性相反的特性,升壓模式中,二次側雙電容為並聯充電、串聯放電,轉換器操作於適當責任週期下,即可達到高升壓比,而一次側箝位電路更可有效降低主開關之電壓應力,因此可採用低導通阻抗之開關降低導通損;降壓模式中,二次側雙電容為串聯充電、並聯放電,因此能達到高降壓比,此外,降壓時雙開關和雙電容可視為兩組主動箝位電路,使開關達到零電壓切換,有效降低切換損,轉換器具有高效率及元件少等特色,本文首先提出此雙向轉換器之動作原理與穩態特性分析,最後實作一組轉換電壓24 V/400 V,功率200 W之雛型電路,以驗證本論文中所提雙向轉換器之可行性。
In this thesis, a novel high conversion ratio bidirectional DC-DC converter with coupled-inductor technique is proposed. In boost mode, two capacitors are parallel charged and series discharged by the coupled-inductor. Thus, high step-up voltage gain can be achieved with an appropriate duty ratio. The voltage stress on the main switch is reduced by a clamp circuit. Therefore, low resistance RDS(ON) of the main switch can be adopted to reduce conduction loss. In buck mode, two capacitors are series charged and parallel discharged by coupled-inductor. The high step-down gain is achieved. Besides, all of the switches are zero voltage-switching (ZVS) turned on and the switching loss can be improved. Due to two active clamp circuits, The efficiency can be further improved. The operating principle and steady-state analyses of the voltage gain are discussed. Finally, a 24-V input voltage, 400-V output voltage, and 200-W output power prototype circuit is implemented in the laboratory to verify the performance.
目  錄
摘 要 III
英文摘要 IV
誌 謝 V
目 錄 VI
表 目 錄 IX
圖 目 錄 X
第一章 緒論 1
1.1研究背景與目的 1
1.2論文內容大綱 3
第二章 高轉換比雙向轉換器簡介 4
2.1隔離型高轉換比雙向轉換器 5
2.1.1返馳式雙向轉換器 5
2.1.2半橋-推挽雙向轉換器 7
2.1.3全橋-推挽雙向轉換器 8
2.1.4順向-返馳混合式雙向轉換器 9
2.2非隔離型高轉換比雙向轉換器 11
2.2.1單級雙向轉換器 11
2.2.2單級串接式雙向轉換器 12
2.2.3單級並接式雙向轉換器 13
2.2.4耦合電感雙向轉換器 15
2.2.5耦合電感串接式雙向轉換器 17
2.2.6耦合電感疊接式雙向轉換器 18
2.2.7零電流切換式電容型雙向轉換器 19
第三章 新型高轉換比雙向直流-直流轉換器 22
3.1主電路架構 22
3.2升壓模式 25
3.2.1升壓模式電路分析 25
3.2.2升壓模式電壓轉換比 31
3.2.3升壓模式邊界導通條件 33
3.3降壓模式 35
3.3.1 降壓模式電路分析 35
3.3.2 降壓模式電壓轉換比 42
3.3.3 降壓模式邊界導通條件 43
第四章 電路設計與實驗結果分析與討論 45
4.1 系統架構與系統規格 45
4.2耦合電感參數設計 47
4.3電容參數設計 48
4.4半導體元件設計 51
4.5 實驗結果與討論 55
第五章 結論與未來研究方向 67
5.1結論 67
5.2未來研究方向 67
參考文獻 69

[1]T. F. Wu, K. H. Sun, C. L. Kuo and C. H. Chang, “Predictive current controlled 5-kw single-phase bidirectional inverter with wide inductance variation for dc-microgrid applications, IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3076-3084, Dec. 2010.
[2]X. Zhu, X. Li, G. Shen and D. Xu, “Design of the dynamic power compensation for PEMFC distributed power system, IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1935–1944, Jun. 2010.
[3]R. Gules, J. D. P. Pacheco, H. L. Hey and J. Imhoff, “A maximum power point tracking system with parallel connection for PV stand-alone applications, IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2674–2683,Jul. 2008.
[4]R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity, IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sep. 2007.
[5]M. Jang and V. G. Agelidis, “A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage, IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1568-1577, May. 2011.
[6]Venkatesan, K., “Current mode controlled bidirectional flybackconverter, IEEE PESC., vol. 2, pp. 835-842, Jun. 1989
[7]T. Bhattacharya, V. S. Giri, K. Mathew and L. Umanand, “Multiphase bidirectional flyback converter topology for hybrid electric vehicles, IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 78–84, Jan. 2009.
[8]G. Chen, Y. S. Lee, S. Y. R. Hui, D. Xu, and Y. Wang, “Actively clamped bidirectional flyback converter, IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 770–779, Aug. 2000.
[9]L. Eitzen, C. Graf, and J. Maas, “Cascaded bidirectional flyback converter driving DEAP transducers, in Proc. IEEE IECON, pp. 1226-1231, Nov. 2011.
[10]T. Qian and B. Lehman, “Coupled input-series and output-parallel dual interleaved flyback converter for high input voltage application, IEEE Trans. Power Electron., vol. 23, no. 1, pp. 88–95, Jan. 2008.
[11]B. R. Lin, C. L. Huang and Y. E. Lee, “Asymmetrical pulse-width modulation bidirectional dc–dc converter, IET Power Electron., vol. 1, no. 3, pp. 336–347, Sep. 2008.
[12]G. Ma, W. Qu, G. Yu, Y. Liu, N. Liang and W. Li, “A zero-voltage switching bidirectional dc–dc converter with state analysis and soft switching-oriented design consideration, IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2174–2184, Jun. 2009.
[13]F. Z. Peng, H. Li, G. J. Su and J. S. Lawler, “A new ZVS bidirectional dc–dc converter for fuel cell and battery application, IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54–65, Jan. 2004.
[14]H. Li, F. Z. Peng and J. S. Lawler, “A natural ZVS medium-power bidirectional dc–dc converter with minimum number of devices, IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 525–535, Mar. 2003.
[15]L. R. Chen, N. Y. Chu, C. S. Wang and R. H. Liang, “Design of a reflexbased bidirectional converter with the energy recovery function, IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3022–3029, Aug. 2008.
[16]T. F. Wu, Y. C. Chen, J. G. Yang and C. L. Kuo, “Isolated bidirectional full-bridge dc–dc converter with a flyback snubber, IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1915–1922, Jul. 2010.
[17]S. Inoue and H. Akagi, “A bidirectional dc–dc converter for an energy storage system with galvanic isolation, IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2299–2306, Nov. 2007.
[18]Y. Xie, J. Sun and J. S. Freudenberg, “Power flow characterization of a bidirectional galvanically isolated high-power dc-dc converter over a wide operating range, IEEE Trans. Power Electron., vol. 25, no. 1, pp. 54–66, Jan. 2010.
[19]S. Jalbrzykowski, A. Bogdan and T. Citko, “A dual full-bridge resonant class-e bidirectional dc-dc converter, IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3879–3883, Sep. 2011.
[20]L. Zhu, “A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for bidirectional high power applications, IEEE Trans. Power Electron., vol. 21, no. 2, pp. 422–429, Mar. 2006.
[21]F. Zhang and Y. Yan, “Novel forward-flyback hybrid bidirectional dc–dc converter, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578–1584, May. 2009.
[22]B.-R. Lin, J.-J. Chen and F.-Y. Hsieh, “Analysis and Implementation of a Bidirectional Converter with High Conversion Ratio, in Proc. IEEE ICIT. Conf., 2008, pp. 1-6
[23]L. S. Yang and T. J. Liang, “Analysis and implementation of a novel bidirectional dc-dc converter, IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 422-434, Jan. 2012.
[24]P. Das, S. A. Mousavi and G. Moschopoulos, “Analysis and design of a nonisolated bidirectional zvs-pwm dc-dc converter with coupled inductors, IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2630-2641, Oct. 2010.
[25]C.Y. Inaba, Y. Konishi and M. Nakaoka “High frequency PWM controlled step-up chopper type dc-dc power converters with reduced peak switch voltage stress, IEE Proc.-Electr. Power Appl., vol. 151, no. 1, pp. 47–52, January 2004
[26]R.-J. Wai, R.-Y. Duan and K.-H. Jheng, “High-efficiency bidirectional dc–dc converter with high-voltage gain, IET Power Electron., vol. 5, pp. 173-184, Jun. 2012.
[27]K. Jin, M. Yang, X. Ruan and M. Xu, “Three-level bidirectional converter for fuel-cell/battery hybrid power system, IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1976–1986, Jun. 2010.
[28]W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin and C. H. Liu, “Analysis, design, and control of bidirectional cascoded configuration for a fuel cell hybrid power system, IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1565–1575, Jun. 2010.
[29]L. Schuch, C. Rech, H. L. Hey, H. A. Grundling, H. Pinheiro and J. R. Pinheiro, “Analysis and design of a new high-efficiency bidirectional integrated ZVT PWM converter for DC-bus and battery-bank interface, IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1321–1332, Sep./Oct. 2006
[30]Y. S. Lee and Y. Y. Chiu, “Zero-current-switching switched-capacitor bidirectional dc–dc converter, Proc. Inst. Elect. Eng.-Electr. Power Appl., vol. 152, no. 6, pp. 1525–1530, Nov. 2005.
[31]Z. Amjadi and S. S. Williamson, “A novel control technique for a switched-capacitor-converter-based hybrid electric vehicle energy storage system, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 926–934,Mar. 2010.
[32]F. Z. Peng, F. Zhang and Z. Qian, “A magnetic-less dc–dc converter for dual-voltage automotive systems, IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 511–518, Mar./Apr. 2003.
[33]Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, “A novel high step-up dc-dc converter for a microgrid system, IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127–1136, Apr. 2011.
[34]Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, “Analysis and implementation of a novel single-switch high step-up dc-dc converter, IET Power Electron., 2012, Vol. 5, pp. 11– 21
[35]W. C. Liao, T. J. Liang, H. H. Liang, H. K. Liao, L. S. Yang, K. C. Juang and J. F. Chen, “Study and implementation of a novel bidirectional dc-dc converter with high conversion ratio, in Proc. IEEE ECCE, 2011, pp. 134–140.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top