跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昊宇
研究生(外文):Hao-YuLi
論文名稱:以低成本之改良式背電極製作高效率之薄膜矽太陽能電池
論文名稱(外文):High-Efficiency Thin-Film Silicon Solar Cell with Low-Cost Improved Back Electrode
指導教授:李文熙
指導教授(外文):Wen-Hsi Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:背電極氧化鋅鋁白漆法布利-培若外部量子效率
外文關鍵詞:Back electrodeAZOPDRExternal Quantum Efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背電極在太陽能電池中扮演極關鍵角色,本論文製作一薄膜矽太陽能電池之背電極,目的在以較低廉的成本取代傳統背電極。
實驗上共分兩部分,第一部分以RF磁控濺鍍法針對背電極中的透明導電膜氧化鋅鋁(AZO)做各種製程參數之探討,以求能在電阻率以及穿透率取得最佳化條件,第二部分則針對傳統背電極作改良,一般傳統太陽能電池背電極大部分為透明導電膜搭配金屬電極(通常是Ag)再加上金屬保護層(Al或Ti),在這裡我們將Ag厚度從200~250nm減薄至30~50nm,並塗上PDR(Pigmented Dielectric Reflector)來取代Ti,PDR則採用摻有奈米級TiO2顆粒的白色膠漆狀塗料,我們簡稱白漆,目的在降低成本並藉由白漆的高反射率以及散射能力來改善Fabry-Pe´rot干涉現象以提升外部量子效率(EQE;External Quantum Efficiency)。
在AZO實驗方面,共針對基板溫度、濺鍍功率及製程壓力三組參數做實驗探討,而結果顯示將基板溫度升高、濺鍍功率加大以及降低製程壓力,可使電阻率下降,在厚度100nm達到6.4×10-3Ω.cm,而穿透率在可見光波段可達到80%以上;在白漆實驗方面,共針對三種粒徑(135nm、230nm、320nm)以及三種固含量(12%、15%、20%)的白漆做反射率及霧度量測,接著塗佈在太陽能電池元件上量測IV及QE,結果顯示三種不同粒徑的白漆均有提升QE且改善法布利-培若(Fabry-Pe´rot)干涉現象的能力但其中以粒徑135nm在Ag50nm下的改善幅度最大,推測粒徑最小的散射效率最佳。

Back electrode plays a very key role in solar cells; in this dissertation, we produce a back electrode of thin-film silicon solar cell, aiming at a lower cost to replace the traditional back electrode.
The experiment is divided into two parts; the first part, we use the RF magnetron sputtering method to deposit the transparent conductive film AZO (ZnO: Al) of the back electrode with various process parameters, in order to achieve the best resistivity and transmittance, in the second, we are in accordance with traditional back electrode for improvement. Most of the conventional back electrode of solar cells consist of the transparent conductive film and a metal electrode (usually Ag) coupled with the metal protective layer (Al or Ti). Here we use thin Ag layer with thickness reducing from 200~250nm to 30~50nm, and coated with PDR (Pigmented Dielectric Reflector) to replace Ti. PDR is a paint-like coating of white glue mixed with nano-TiO2 particles. The white paint is aimed at reducing costs and improving Fabry-Pe'rot interference by high reflectance and scattering power of the white paint to enhance external quantum efficiency.
In AZO experiments, we investigate three sets of parameters including substrate temperature, sputtering power, and working pressure. The results show that at high substrate temperature, high sputtering power and low working pressure, the AZO film of thickness 100nm has the lowest resistivity of 6.4 × 10-3Ω.cm, and the transmittance in the visible light reaches more than 80%. In white paint experiment, we measure the reflectance and the Haze of the films with three different particle size (135nm, 230nm, 320nm) and solid content (12%, 15%, 20%) of white paint, and then coat the white paint on the solar cell to measure IV and the QE. The results show that all the white paint can enhance the QE and improve Fabry-Pe'rot interference , in particular, the white paint with the particle size 135nm under Ag50nm has the most profound effect likely due to the smallest particle size has the best scattering efficiency.

摘要..........Ⅰ
Abstract..........Ⅲ
致謝..........Ⅴ
目錄..........Ⅵ
表目錄..........Ⅷ
圖目錄..........Ⅸ

目錄
第一章 緒論..........1
1-1 前言..........1
1-2 太陽能電池種類及比較..........1
1-3 實驗動機及研究目的..........3
第二章 理論基礎及文獻探討..........8
2-1 透明導電膜之原理及應用..........8
2-2 氧化鋅薄膜簡介..........10
2-2-1 概論..........10
2-2-2 AZO薄膜之光電特性..........11
2-3 濺鍍原理..........13
2-3-1 直流濺鍍(DC Sputtering) ..........14
2-3-2 射頻濺鍍(RF Sputtering) ..........15
2-3-3 磁控濺鍍(Magnetron Sputtering) ..........17
2-4 薄膜沉積原理..........18
2-4-1 沉積現象..........18
2-4-2 薄膜表面及截面型態結構..........20
2-5 太陽能電池介紹.......... 21
2-5-1 太陽光譜介紹..........21
2-5-2 光伏特效應(Photovoltaic Effect). ..........22
2-5-3 太陽能電池工作原理及特性分析..........24
2-6 Fabry–Pérot干涉儀..........28
2-7 Fabry–Pérot對QE的影響..........30
2-8 TiO2的性質與結構..........31
2-9 PDR(Pigmented Dielectric Reflector)的散射機制......33
第三章 實驗流程及量測方法..........35
3-1 實驗介紹..........35
3-1-1 實驗材料..........35
3-2-2 實驗大綱..........36
3-2 濺鍍系統介紹..........36
3-3 實驗參數及步驟..........38
3-3-1 基板清洗..........38
3-3-2 AZO鍍膜參數..........39
3-3-3 Ag鍍膜參數..........39
3-3-4 白漆種類..........39
3-3-5 白漆反射率及霧度量測以及後續IV及QE量測..........40
3-4 量測分析儀器..........40
3-4-1 表面輪廓儀(α-step) ..........40
3-4-2 四點探針量測系統(Four Point Probe Measurement)..........41
3-4-3 掃描式電子顯微鏡(Scanning Electron Microscope)..........43
3-4-4 霍爾效應量測系統(Hall Effect Measurement)..........44
第四章 結果與討論..........47
4-1 AZO電阻率製程參數探討..........47
4-1-1 基板溫度對AZO薄膜電阻率的影響..........47
4-1-2 濺鍍功率對AZO薄膜電阻率的影響..........48
4-1-3 製程壓力對AZO薄膜電阻率的影響..........49
4-2 AZO穿透率製程參數探討..........52
4-2-1 基板溫度對AZO薄膜穿透率的影響..........52
4-2-2 濺鍍功率對AZO薄膜穿透率的影響..........54
4-3 AZO微結構探討..........54
4-4 白漆調配..........58
4-5 白漆反射率與霧度..........61
4-6 白漆IV特性探討..........67
4-6-1 白漆之Pmax與Voc探討..........67
4-6-2 白漆之Pmax與Jsc探討..........68
4-6-3 白漆之Pmax與FF探討..........69
4-6-4 白漆之Pmax與Rs探討..........71
4-6-5 白漆之Pmax與Rsh探討..........72
4-7 白漆QE特性探討..........73
4-7-1 Ag30nm下塗白漆前後的QE探討..........74
4-7-2 Ag30nm下同粒徑不同固含量的QE探討..........77
4-7-3 Ag30nm下同固含量不同粒徑的QE探討..........79
4-7-4 Ag50nm下塗白漆前後的QE探討..........81
4-7-5 Ag50nm下同粒徑不同固含量的QE探討. ..........84
4-7-6 Ag50nm下同固含量不同粒徑的QE探討..........85
4-7-7 同粒徑下不同Ag層厚度的QE探討..........87
4-7-8 不同Ag層厚度中取最佳QE探討. ..........91
第五章 結論..........94
5-1 AZO薄膜參數結論..........94
5-2 白漆對QE的貢獻結論..........94
參考文獻..........96

表目錄
表1-1太陽能電池全球佔有率..........2
表1-2太陽能電池總類..........2

圖目錄
圖1-1 太陽能電池架構示意圖..........4
圖1-2 太陽能電池成本比例圖..........5
圖1-3 改良前之薄膜矽太陽能電池結構..........7
圖1-4 改良後之薄膜矽太陽能電池結構..........7
圖2-1 ZnO之Wurtzite結構,黑色部分為Zn2+離子,淺色部分為O2-離子..........11
圖2-2 Burstein-Moss效應示意圖..........12
圖2-3 表面濺射原理示意圖..........13
圖2-4 直流濺鍍構造示意圖..........14
圖2-5 射頻濺鍍構造示意圖..........16
圖2-6 磁控濺鍍構造示意圖..........17
圖2-7 薄膜成長機制示意圖..........18
圖2-8 Sputter-zone Model..........20
圖2-9 太陽光譜圖..........21
圖2-10 空氣質量示意圖..........22
圖2-11 太陽能電池照光產生光電流示意圖..........24
圖2-12 太陽能電池等效電路圖..........25
圖2-13 太陽能電池之I-V曲線..........26
圖2-14 包含串聯電阻和分流電阻的太陽能電池等效電路圖..........27
圖2-15 Fabre-Perot干涉儀示意圖..........29
圖2-16 標準製程下的QE..........30
圖2-17 Rutile及Anatase之晶格結構..........32
圖2-18 白漆散射示意圖..........33
圖2-19 PDR散射效率與粒徑關係圖..........34
圖3-1 磁控濺鍍系統..........36
圖3-2 冷卻系統(冰水機) ..........38
圖3-3 α-step量測示意圖..........41
圖3-4 α-step膜厚分析儀..........41
圖3-5 四點探針量測示意圖..........42
圖3-6 四點探針量測系統..........43
圖3-7 場發射掃描式電子顯微鏡..........44
圖3-8 霍爾效應原理示意圖..........46
圖3-9 霍爾效應量測系統..........46
圖4-1 AZO在不同基板溫度下之電阻率..........48
圖4-2 AZO在不同濺鍍功率下之電阻率..........49
圖4-3 AZO在不同製程壓力下之電阻率..........50
圖4-4 熱均化距離示意圖..........51
圖4-5 AZO在不同基板溫度下的穿透率..........53
圖4-6 AZO在不同濺鍍功率下的穿透率...........54
圖4-7 (a)~(d)AZO在不同溫度之下之SEM微結構圖..........56
圖4-8 (a)~(c)AZO在不同濺鍍功率之下之SEM微結構圖..........58
圖4-9 (a)~(c)為D135、D230、D320之TiO2粉末的SEM圖..........60
圖4-10 自行調配之白漆..........60
圖4-11 廠商調配之白漆..........61
圖4-12 (a)~(f)為各組白漆在不同厚度之下之反射率..........64
圖4-13 各組白漆之中最佳反射率之比較圖..........65
圖4-14 各組白漆之中最佳反射率之霧度比較圖..........66
圖4-15 Ag30nm下各組白漆的Pmax與Voc關係圖..........67
圖4-16 Ag50nm下各組白漆的Pmax與Voc關係圖..........68
圖4-17 Ag30nm下各組白漆的Pmax與Jsc關係圖..........68
圖4-18 Ag50nm下各組白漆的Pmax與Jsc關係圖..........69
圖4-19 Ag30nm下各組白漆的Pmax與FF關係圖..........70
圖4-20 Ag50nm下各組白漆的Pmax與FF關係圖..........70
圖4-21 Ag30nm下各組白漆的Pmax與Rs關係圖..........71
圖4-22 Ag50nm下各組白漆的Pmax與Rs關係圖..........72
圖4-23 Ag30nm下各組白漆的Pmax與Rsh關係圖..........72
圖4-24 Ag50nm下各組白漆的Pmax與Rsh關係圖..........73
圖4-25 Ag30nm下各組未塗白漆的標準片的QE..........74
圖4-26 Ag30nm下標準片Std-A塗佈D135-20%和D230-12%的QE..........75
圖4-27 Ag30nm下標準片Std-B塗佈D230-15%、D230-20%、D320-15%的QE..........75
圖4-28 Ag30nm下標準片Std-C塗佈D320-12%的QE..........76
圖4-29 Ag30nm下D230不同固含量的QE..........78
圖4-30 Ag30nm下D320不同固含量的QE..........78
圖4-31 Ag30nm下固含量12%各組白漆的QE..........79
圖4-32 Ag30nm下固含量15%各組白漆的QE..........80
圖4-33 Ag30nm下固含量20%各組白漆的QE..........80
圖4-34 Ag50nm下各組未塗白漆的標準片的QE..........1
圖4-35 Ag50nm下標準片Std-D塗佈D135-20%、D230-12%、D230-15%的QE..........82
圖4-36 Ag50nm下標準片Std-E塗佈D230-20%、D320-12%、D320-15%的QE..........83
圖4-37 Ag50nm下D230不同固含量的QE..........84
圖4-38 Ag50nm下D320不同固含量的QE..........85
圖4-39 Ag50nm下固含量12%各組白漆的QE..........86
圖4-40 Ag50nm下固含量15%各組白漆的QE..........86
圖4-41 Ag50nm下固含量20%各組白漆的QE..........87
圖4-42 (a)~(f)為各組白漆在不同Ag層厚度下的QE..........90
圖4-43 Ag30nm中最佳的QE(D230-20%)..........92
圖4-44 Ag50nm中最佳的QE(D135-20%)..........92
圖4-45 不同Ag層厚度中兩組最佳QE的比較............93


[1]Climate Change 2007: The Physics Science Basis, IPCC.
[2]潘哲威,從International Photovoltaic Cells 19th看太陽能電池發展近況(2010).
[3]H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, Appl. Phys. Lett. 76, 2740 (2000).
[4]A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama, M. Okuda, Jpn. J. Appl. Phys. 40 (2001) L401.
[5]A. Suzuki, T. Matsushita, T. Aoki, A. Mori and M. Okuda, Thin Solid Films. 411(2002)23-27.
[6]L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, R. martins, Thin Solid Films, 511-512 (2006) 295.
[7]H. Takatsuji, “Pure Al thin film protective layer to prevent stress migration in Al wiring for thin-film transistors, Surface and Coatings Technology, v125, n1, Mar, (2000), pp.167-172.
[8]P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lin, B. Yao, B. H. Li, Y. Bai, X. W. Fan, Appl. Surface Sci. 254(2008)2900.
[9]B. Yao, L. X. Guan, G. Z. Xing, Z. Z. Zhang, B. H. Li, Z. P. Wei, X. H. Wang, C. X. Cong, Y. P. Xie, Y. M. Lu, D. Z. Shen, J. Lumin, 122(2007)191.
[10]J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, Mater. Lett. 57 (2003) 3311.
[11]X. B. Zhang, Z. L. Pei, J. Gong, C. Sun, J. Appl. Phys. 101 (2007) 014910.
[12]透明導電氧化物應用於矽薄膜太陽電池前電極之技術發展(上),工業材料雜誌,281期(2010).
[13]J. Müller, B. Rech, J Springer, M Vanecek, Solar Energy, 77, (2004)917-930.
[14]M. Vergo¨hl, N. Malkomes, B. Szyszka, F. Neumann, and T. Matthe´e,“Optimization of the reflectivity of magnetron sputter deposited silver films, J. Vac. Sci. Technol. A18, 1632(2000).
[15]Vivian E. Ferry, Luke A. Sweatlock, Domenico Pacifici, and Harry A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells, Nano Letters, Vol. 8, NO.12, 4391-4397(2008).
[16]H. L. Hartnagel, A. K. Jain, and C. Jagadish, “Semiconducting Transparent Thin Films, Institute of Physics Publishing(1995).
[17]H. Czternastek, A. Brudnik, and M. Jachimowski, Solid Stat. Commun. 65, 1025(1988).
[18]H. kawazoe, H. yanagi, K. ueda, and H. Hosono, MRS Bull, Aug.,28, (2000).
[19]H. D. Liu, Y. P. Zhao, G. Ramanath, S. P. Murarka, G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films, Thin Solid Films, vol. 384(2001)pp.151-156.
[20]C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, T. Hirao, “Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering, Thin Solid Films, vol.517(2009)pp.3265-3268 .
[21]Yoichi Hoshi, Takakazu Kiyomura, “ITO thin films deposited at low temperatures using a kinetic energy controlled sputter-deposition technique, Thin Solid Films, vol.411(2002)pp.36-41.
[22]A. E. Rakhshani, Y. Madisi, H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films, Journal of Applied Physics, vol. 83 (1998) pp. 1049-1056.
[23]H. S. Yoon, K. S. Lee, T. S. Lee, B. Cheong, D. K. Choi, D. H. Kimc, W. M. Kima, “Properties of fluorine doped ZnO thin films deposited by magnetron sputtering, Solar Energy Materials & Solar Cells, vol. 92 (2008) pp.1366-1372.
[24]溫文杰,“電漿氣氛對射頻磁控濺鍍法沉積AZO薄膜特性影響之研究",大同大學材料工程研究所,碩士論文(2007).
[25]C. H. YI, Itaru and Y.Shigesato, Jpn. J. Appl. Phys. 1, Vol.34, p.1638, (1995).
[26]陳靜怡,“氧化鋅中介層對ITO透明導電膜性質之影響",國立成功大學材料科學所,碩士論文(2002).
[27]W. R. Grove, “On Some Phenomena of the Voltaic Discharge, The Philosophical Magazine, vol. 16(1840)pp.478-482.
[28]賴耿陽,“IC 製程之濺射技術,復漢出版社,(1997).
[29]T. Minami, S. Ida, T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films, vol. 416(2002)pp.92-96.
[30]Brian Chapman, “Glow Discharge Processes Sputtering and Plasma Etching, John Wiley and Sons Inc, New York, (1980).
[31]J. A. Thornton, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol, vol. 11(1974) pp. 666-670.
[32]J. A. Thornton, “Influence of substrate temparature and deposition rate on structure of thick sputtered Cu coatings, J. Vac. Sci. Technol, vol. 12 (1975) pp. 830-835.
[33]B. Lewis and J. C. Anderson, “Nucleation and Growth of Thin Film, (1978).
[34]H. J. MOller, Semiconductor for solar cell, Artech House Press, Boston, (1993).
[35]太陽電池量測技術,工業材料雜誌,258期,(2008).
[36]S.O.Kasap,Optoelectronics (Prentice Hall),(1999).
[37]林明獻,太陽電池入門技術,2nd ed.,全華圖書股份有限公司,(2008).
[38]李冠卿,近代光學,聯經出版事業公司,(1988).
[39]http://zh.wikipedia.org/wiki/File:Etalon-1.svg
[40]A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chemical Reviews, vol. 95, no.3, pp.735-758,(1995).
[41]Jeffrey E. Cotter,* Robert B. Hall, Michael G. Mauk and Allen M. Barnett, Light Trapping in Silicon-Film Solar Cells with Rear Pigmented Dielectric Reflectors, Res. Appl. 7,261-274(1999).
[42]http://airp.org.tw/SOP/NCKU/SOP%204-Point%20Probe.pdf
[43]D. L. Smith, Chap10 Film Analysis, Thin Film Deposition, McGraw-Hill, New York,USA,(1995).
[44]汪建民,材料分析,中國材料科學學會,(1998).
[45]B. Chapman, “Glow Discharge Processes, John Wiley & Sons. Inc. N. Y. , (1980), chap.1.
[46]K. Meyer, I. K. Schuller and C. M. Falco, “Thermalization of sputtered atoms, J. Applt. Phys. 52, 5803 (1981).
[47]Mitsuhara Konuma, “Film deposition by plasma technique
[48]Westwood, W. D., “Calculation of Deposition Rates in Diode Sputtering System, J. Vac. Sci. Techl., (1978)15:1.
[49]D. L. Smith, “Thin-Film Deposition, McGraw Hill (1995).
[50]G. M. Turner, “Monte Carlo calculations of the properties of sputtered atoms at a substrate surface in a magnetron discharge, p.455-461.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top