[1] C. R. Anderson and T. S. Rappaport, In-building wideband partition loss measurements at 2.5 and 60 GHz, IEEE Transactions on Wireless Communications, vol. 3, pp. 922-928, 2004.
[2] 蔡宗倫, 應用於V-band毫米波前端電路之CMOS壓控振盪器與混頻器設計, 碩士, 電腦與通信工程研究所, 國立成功大學, 台南市, 2011.[3] A. Hajimiri and T. H. Lee, A general theory of phase noise in electrical oscillators, IEEE Journal of Solid-State Circuits, vol. 33, pp. 179-194, 1998.
[4] C. Huan, X. Wu, and D. Wang, A charge-pump circuit to restrain reference spurs in the PLL, Conference on 2011 IEEE 9th International in ASIC, pp. 1010-1013, 2011.
[5] S. Yuan, S. Liter, and S. Pengyu, Design of a High Performance Charge Pump Circuit for Low Voltage Phase-locked Loops, International Symposium on Integrated Circuits ( ISIC 2007), pp. 271-274 , 2007.
[6] A. P. van der Wel, S. L. J. Gierkink, R. C. Frye, V. Boccuzzi, and B. Nauta, A robust 43-GHz VCO in CMOS for OC-768 SONET applications, IEEE Journal of Solid-State Circuits, vol. 39, pp. 1159-1163, 2004.
[7] M. Vroubel, Z. Yan, B. Rejaei, and J. N. Burghartz, Integrated tunable magnetic RF inductor, Electron Device Letters, IEEE, vol. 25, pp. 787-789, 2004.
[8] M.-H. Cho and L.-K. Wu, A Novel Electrically Tunable RF Inductor With Ultra-Low Power Consumption, IEEE Microwave and Wireless Components Letters, vol. 18, pp. 242-244, 2008.
[9] P.-L. You, K.-L. Huang, and T.-H. Huang, 56 GHz CMOS VCO integrated with a switchable non-uniform differential transmission-line inductor, in 2009 Microwave Conference (EuMC 2009), pp. 397-400, 2009.
[10] H. Sjoland, Improved switched tuning of differential CMOS VCOs, Circuits and Systems II: IEEE Transactions on Analog and Digital Signal Processing, vol. 49, pp. 352-355, 2002.
[11] D. B. Leeson, A simple model of feedback oscillator noise spectrum, Proceedings of the IEEE, vol. 54, pp. 329-330, 1966.
[12] E. Hegazi, H. Sjoland, and A. A. Abidi, A filtering technique to lower LC oscillator phase noise, IEEE Journal of Solid-State Circuits, vol. 36, pp. 1921-1930, 2001.
[13] S.-L. Jang, H.-M. Chen, J.-C. Han, C.-F. Lee, and Y.-D. Jhuang, A 5GHz Low Phase Noise Hartley Quadrature CMOS VCO, IEEE International Solid-State Circuits Conference (ISSCC 2007), pp. 961-964, 2007.
[14] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion, IEEE Journal of Solid-State Circuits, vol. 37, pp. 1003-1011, 2002.
[15] P. Andreani and H. Sjoland, Tail current noise suppression in RF CMOS VCOs, IEEE Journal of Solid-State Circuits, vol. 37, pp. 342-348, 2002.
[16] A. Jerng and C. G. Sodini, The impact of device type and sizing on phase noise mechanisms, IEEE Journal of Solid-State Circuits, vol. 40, pp. 360-369, 2005.
[17] J. J. Rael and A. A. Abidi, Physical processes of phase noise in differential LC oscillators, in IEEE 2000 Custom Integrated Circuits Conference (CICC), pp. 569-572, 2000.
[18] K. Yamamoto and M. Fujishima, 70GHz CMOS Harmonic Injection-Locked Divider, IEEE International Solid-State Circuits Conference (ISSCC 2006), pp. 2472-2481, 2006.
[19] G. von Buren, C. Kromer, F. Ellinger, A. Huber, M. Schmatz, and H. Jackel, A Combined Dynamic and Static Frequency Divider for a 40GHz PLL in 80nm CMOS, IEEE International Solid-State Circuits Conference (ISSCC 2006), pp. 2462-2471, 2006.
[20] T. N. Luo, S. Y. Bai, and Y. J. E. Chen, 77 GHz CMOS injection-locked Miller frequency divider, Electronics Letters, vol. 45, pp. 57-59, 2009.
[21] T. S. Aytur and B. Razavi, A 2-GHz, 6-mW BiCMOS frequency synthesizer, IEEE Journal of Solid-State Circuits, vol. 30, pp. 1457-1462, 1995.
[22] S. Verma, H. R. Rategh, and T. H. Lee, A unified model for injection-locked frequency dividers, IEEE Journal of Solid-State Circuits, vol. 38, pp. 1015-1027, 2003.
[23] H. R. Rategh and T. H. Lee, Superharmonic injection-locked frequency dividers, IEEE Journal of Solid-State Circuits, vol. 34, pp. 813-821, 1999.
[24] C.-Y Wu. and C.-Y. Yu, Design and Analysis of a Millimeter-Wave Direct Injection-Locked Frequency Divider With Large Frequency Locking Range, IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 1649-1658, 2007.
[25] H. Wu and A. Hajimiri, A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement, IEEE International Solid-State Circuits Conference (ISSCC 2001) , pp. 412-413, 2001.
[26] M. Tiebout, A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider, IEEE Journal of Solid-State Circuits, vol. 39, pp. 1170-1174, 2004.
[27] K. Yamamoto and M. Fujishima, 55GHz CMOS frequency divider with 3.2GHz locking range, IEEE International Solid-State Circuits Conference (ISSCC 2004), pp. 135-138, 2004.
[28] Y. T. Chen, M. W. Li, T. H. Huang, and C. Huey-Ru, A V-Band CMOS Direct Injection-Locked Frequency Divider Using Forward Body Bias Technology, IEEE Microwave and Wireless Components Letters, vol. 20, pp. 396-398, 2010.
[29] J.-C. Chien and L.-H. Lu, 40GHz Wide-Locking-Range Regenerative Frequency Divider and Low-Phase-Noise Balanced VCO in 0.18 μm CMOS, IEEE International Solid-State Circuits Conference (ISSCC 2007) , pp. 544-621, 2007.
[30] H. Wu and L. Zhang, A 16-to-18GHz 0.18-m Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider, IEEE International Solid-State Circuits Conference ( ISSCC 2006 ), pp. 2482-2491, 2006.
[31] C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13μm CMOS technology, IEEE International Solid-State Circuits Conference ( ISSCC 2007 ), pp. 344-347, 2007.
[32] P.-K. Tsai, T.-H. Huang, and Y.-H. Pang, CMOS 40 GHz divide-by-5 injection-locked frequency divider, Electronics Letters, vol. 46, pp. 1003-1004, 2010.
[33] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, Low-Voltage, Wide-Locking-Range, Millimeter-Wave Divide-by-5 Injection-Locked Frequency Dividers, IEEE Transactions on Microwave Theory and Techniques, vol. 60, pp. 679-685, 2012.
[34] 李思翰, 應用CMOS製程研製之雙模態除三及除五直接注入鎖定頻率除頻器與24 GHz鎖相迴路設計, 碩士, 電機工程工程研究所, 國立成功大學, 台南市, 2011.[35] L. Jae-Shin, K. Min-Sun, L. Shin-Il, and K. Suki, Charge pump with perfect current matching characteristics in phase-locked loops, Electronics Letters, vol. 36, pp. 1907-1908, 2000.
[36] F. M. Gardner, Phaselock Techniques, 2nd ed,. Wiley, New York, 1979.
[37] 邱繼崑, CMOS射頻頻率合成器電路之設計與製作, 碩士, 電機工程學研究所, 國立臺灣大學, 台北市, 2001.[38] F. Gardner, Charge-Pump Phase-Lock Loops, IEEE Transactions on Communications, vol. 28, pp. 1849-1858, 1980.
[39] 林金龍, 應用於多標準/多模態可重組式共存系統之低功率高效能鎖相迴路, 碩士, 電機工程工程研究所, 國立成功大學, 台南市, 2011.[40] L. Kyoohyun, P. Chan-Hong, K. Dal-Soo, and K. Beomsup, A low-noise phase-locked loop design by loop bandwidth optimization, IEEE Journal of Solid-State Circuits, vol. 35, pp. 807-815, 2000.
[41] T. Wu, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, Method for a Constant Loop Bandwidth in LC-VCO PLL Frequency Synthesizers, IEEE Journal of Solid-State Circuits, vol. 44, pp. 427-435, 2009.
[42] M. H. Perrott, M. D. Trott, and C. G. Sodini, A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis, IEEE Journal of Solid-State Circuits, vol. 37, pp. 1028-1038, 2002.
[43] J. Lee, M. Liu, and H. Wang, A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology, IEEE Journal of Solid-State Circuits, vol. 43, pp. 1414-1426, 2008.
[44] C. Cao, Y. Ding, and K. K. O, A 50-GHz Phase-Locked Loop in 0.13-μm CMOS, IEEE Journal of Solid-State Circuits, vol. 42, pp. 1649-1656, 2007.
[45] W. Winkler, J. Borngraber, B. Heinemann, and F. Herzel, A fully integrated BiCMOS PLL for 60 GHz wireless applications, IEEE International Solid-State Circuits Conference ( ISSCC 2005 ), vol. 1, pp. 406-407, 2005.
[46] J. Jeong and Y. Kwon, A fully integrated V-band PLL MMIC using 0.15-μm GaAs pHEMT technology, IEEE Journal of Solid-State Circuits, vol. 41, pp. 1042-1050, 2006.
[47] H.-H. Hsieh, Y.-H. Chen, and L.-H. Lu, A Millimeter-Wave CMOS LC-Tank VCO With an Admittance-Transforming Technique, IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 1854-1861, 2007.
[48] L. Lianming, P. Reynaert, and M. Steyaert, Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank, IEEE Journal of Solid-State Circuits, vol. 44, pp. 1950-1958, 2009.
[49] C. Cao and K. K. O, Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology, IEEE Journal of Solid-State Circuits, vol. 41, pp. 1297-1304, 2006.
[50] K.-C. Kwok and J. R. Long, A 23-to-29 GHz Transconductor-Tuned VCO MMIC in 0.13 μm CMOS, IEEE Journal of Solid-State Circuits, vol. 42, pp. 2878-2886, 2007.
[51] F. Ellinger, T. Morf, G. Buren, C. Kromer, G. Sialm, L. Rodoni, M. Schmatz, and H. Jackel, 60 GHz VCO with wideband tuning range fabricated on VLSI SOI CMOS technology, IEEE 2004 MTT-S International Microwave Symposium Digest, vol. 3 pp. 1329-1332, 2004.
[52] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, VCO design for 60 GHz applications using differential shielded inductors in 0.13 μm CMOS, 2008 IEEE Radio Frequency Integrated Circuits Symposium ( RFIC 2008), pp. 135-138, 2008.
[53] H.-K. Chen, H.-J. Chen, D.-C. Chang, J. Y.-Z. Juang, and S.-S. Lu, A 0.6 V, 4.32 mW, 68 GHz Low Phase-Noise VCO With Intrinsic-Tuned Technique in 0.13 μm CMOS, IEEE Microwave and Wireless Components Letters, vol. 18, pp. 467-469, 2008.
[54] J. Jeong and Y. Kwon, V-band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation, IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1891-1898, 2005.
[55] T.-N. Luo and Y. J. E. Chen, A Millimeter-Wave 90-nm CMOS Self-Mixing Frequency Divider, IEEE Microwave and Wireless Components Letters, vol. 18, pp. 563-565, 2008.
[56] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, A 50 GHz Divide-by-4 Injection Lock Frequency Divider Using Matching Method, IEEE Microwave and Wireless Components Letters, vol. 18, pp. 344-346, 2008.