跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亭諮
研究生(外文):Ting-ZiChen
論文名稱:一個混合電阻串與電容陣列架構的逐漸趨近式類比數位轉換器
論文名稱(外文):A Successive Approximation ADC with Resistor-Capacitor Hybrid Structure
指導教授:張順志
指導教授(外文):Soon-Jyh Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:98
中文關鍵詞:數位至類比轉換器逐漸趨近式類比數位轉換器
外文關鍵詞:ADCSAR ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用一電阻串結合電容陣列,重新安排切換方式,實現了一個十位元每秒取樣五千萬次,具有低輸入電容特性的逐漸趨近式類比至數位轉換器。此類比至數位轉換器具備輔助預測電路,可避免DAC中不必要的電容切換;並且運用管線式類比至數位轉換器常用的每級解1.5位元的架構,減輕粗解類比至數位轉換器的比較器設計困難度。此外,此類比至數位轉換器採用電容電阻的混合數位至類比轉換器架構而不用純電容陣列,因此只需要六位元的數位轉類比電容陣列架構,即可達到十位元數位至類比轉換器的要求,因此可大量減少電容陣列的大小、節省晶片面積。除此之外,為了更進一步增進取樣頻率,此逐漸趨近式類比至數位轉換器採用了非同步控制省去一個高頻時脈產生器的需求。再者,使用了分散單調式電容切換的技巧,可以有效地控制比較器的動態偏移量。
本設計使用台積電90-nm 1P9M CMOS製程來實作晶片,其核心電路面積為220μm × 190μm。在1.2伏特的電壓下,其總消耗功率為0.703毫瓦,有效位元9.3 bits,等效的FoM為28 fJ/conversion-step,而差動非線性與積分非線性峰值分別為-0.49/0.58 LSB與-0.95/1.1 LSB。
This thesis presents a 10-bit 50MS/S successive approximation ADC with low input capacitance that uses an on-chip resistive ladder and capacitor array to arrange a new switching scheme. This analog to digital converter possesses a predictive circuit in order to avoid unnecessary switching in DAC network. In addition, the proposed SAR ADC manipulates the concept of 1.5-bit/stage, which is usually employed in pipelined ADC to ease the design of coarse ADC. Besides, the ADC adopts hybrid capacitive and resistance DAC rather than a pure capacitive one. With this hybrid DAC, the total capacitance of the DAC can be largely reduced. For the sake of enhancing sampling frequency, the ADC uses asynchronous timing control technique to remove the high frequency clock generator. Moreover, the splitting monotonic switching procedure is adopted to reduce the signal-dependent dynamic offset of comparator for maintaining good ADC linearity.
This work is fabricated in TSMC 90-nm 1P9M CMOS process, and occupies 220μm × 190μm active area. This prototype chip consumes 0.703 mW from a 1.2-V supply and the effective number of bits (ENOB) is 9.3 bits. The resultant FOM is 28 fJ/conversion-step. The peak DNL and INL are -0.49/0.58 LSB and -0.95/1.1 LSB, respectively.
摘要 I
Abstract II
誌謝 IV
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 5
Chapter 2 Fundamentals of Analog-to-Digital Converter 6
2.1 Introduction 6
2.2 ADC Performance Metrics 7
2.2.1 Resolution and Accuracy 8
2.2.2 Static Specifications 9
2.2.2.1 Offset Error 9
2.2.2.2 Gain Error 10
2.2.2.3 Nonlinearity 11
2.2.3 Dynamic Specifications 14
2.2.3.1 Signal-to-Noise Ratio 14
2.2.3.2 Signal-to-Noise and Distortion Ratio 16
2.2.3.3 Effective Number of Bits 16
2.2.3.4 Dynamic Range (DR) 17
2.2.3.5 Effective Resolution Bandwidth (ERBW) 18
2.2.3.6 Spurious-Free Dynamic Range 19
2.2.3.7 Total Harmonic Distortion 20
2.2.3.8 Figure-of-Merit (FoM) 21
2.3 Review of ADC Architectures 21
2.3.1 Flash ADC 22
2.3.2 Pipelined ADC 23
2.3.3 Hybrid Architecture 25
2.3.3.1 Two-Step Architecture 25
2.3.3.2 Subrange ADC 26
Chapter 3 Successive Approximation Register Analog-to-Digital Converter 28
3.1 Introduction 28
3.2 The Architecture of SAR ADC 29
3.2.1 Charge-Redistribution SAR ADC 29
3.2.2 Charge-Sharing SAR ADC 33
3.3 Asynchronous Processing Technique 36
3.4 Capacitor Switching Procedure 39
3.4.1 Conventional Capacitor Switching Procedure 39
3.4.2 Split Capacitor Switching Procedure [26] [27] 41
3.4.3 Energy Saving Switching Procedure [28] 42
3.4.4 Merged Capacitor Switching Procedure [29][30] 43
3.4.5 Monotonic Capacitor Switching Procedure [11] 45
3.4.6 Analysis of Switching Energy 46
3.4.7 Summary of Capacitor Switching Procedures 51
3.5 Predictive Capacitor Switching Procedure 53
3.5.1 Splitting Monotonic Capacitor Switching Procedure 53
3.5.2 Predictive Capacitor Switching Procedure 55
Chapter 4 A 10-bit 50-MS/s Asynchronous SAR ADC with Low Input Capacitance 58
4.1 Motivation 58
4.2 The Proposed Low Input Capacitor SAR ADC 60
4.3 Architecture and Operation 62
4.3.1 Architecture of The Proposed SAR ADC 62
4.3.2 DAC Incomplete Settling Tolerance 64
4.3.3 Switch The Reference Voltage with Single Unit Capacitor 65
4.3.4 Operation of The Proposed SAR ADC 67
4.4 Circuit Implementation 68
4.4.1 S/H Circuit 68
4.4.2 Timing Controller 70
4.4.3 Dynamic Comparator 73
4.4.4 Capacitor Array 76
4.4.5 Resistive Ladder 78
4.5 Layout 80
4.6 Simulation Results 81
4.7 Measurement Setup and Measurement Results 86
4.8 Comparison and Discussion 91
Chapter 5 Conclusions and Future Works 92
Bibliography 94
[1]Y. Z. Lin,“CMOS High-Speed Comparator-Based Analog-to-Digital Converters,Ph. D. Thesis, National Cheng Kung University, Taiwan, Dec. 2010.
[2]B. R. Gregoire and U. Moon, “An Over-60dB True Rail-to-Rail Performance Using Correlated Level Shifting and An opamp with Only 30dB Loop Gain, IEEE J. Solid-State Circuits, vol. 43, no. 12,pp 2620-2630, Dec. 2008.
[3]S. H. Cho, C. K. Lee, S. G. Lee, and S. T. Ryu, “A Two-Channel Asynchronous SAR ADC With Metastable-Then-Set Algorithm, IEEE Transactions on VLSI Systems, vol. 20, no. 4, pp 765-769, Apr. 2012.
[4]N. Verma and A. P. Chandrakasan, “A 25μW 100 kS/s 12 b ADC for Wireless Micro-Sensor Applications, in IEEE ISSCC Dig. Tech. Papers, pp. 222–223, 2006.
[5]P. Schvan, J. Bach, C. Falt, P. Flemke, R. Gibbins, Y. Greshishchev,N. Ben-Hamida, D. Pollex, J. Sitch, S.-C. Wang, and J. Wolczanski, “A 24 GS/s 6 b ADC in 90 nm CMOS, in IEEE ISSCC Dig. Tech. Papers, pp. 544–545, Feb. 2008.
[6]F. Kuttner, “A 1.2 V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13 _m CMOS, in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 136–137, 2002.
[7]H. Y. Huang, J. Y. Lin, and C. C. Hsieh, “A 9.2b 47 fJ/Conversion-Step Asynchronous SAR ADC with Input Range Prediction DAC Switching, in Proc. IEEE Int. Symp.Circuits and Systems (ISCAS 2012),May 21–23, pp. 2353–2356, 2012.
[8]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, and S.-J. Chang, “A 9-bit 150-MS/s 1.53-mW Subranged SAR ADC in 90-nm CMOS, IEEE Symp. on VLSI Circuits Dig. Tech. Papers, pp. 243-244, Jun. 2010.
[9]G.-Y. Huang, C.-C. Liu, Y.-Z. Lin, and S.-J. Chang, “A 10-bit 12-MS/s Successive Approximation ADC with 1.2-pF Input Capacitance, IEEE A-SSCC Dig. Tech. Papers, pp. 157-160, Nov. 2009.
[10]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1V 11fJ/Conversion-Step 10bit 10MS/s Asynchronous SAR ADC in 0.18μm CMOS, IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 241-242.
[11]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure, IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[12]D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
[13]Yi-Ting Huang, “A 6-bit 220-MS/s Successive-Approximation Analog-to-Digital Converter,M.S. Thesis, National Cheng Kung University, Taiwan, Dec. 2008.
[14]Shin-Syong Huang, “Design of High-Speed Pipelined Analog-to-Digital Converters, M.S. Thesis, National Cheng Kung University, Taiwan, Jun. 2010.
[15]Chao-Fang Tsai, “A 10-bit 100MS/s Power-Efficient Flash SAR ADC, M.S. Thesis, National Cheng Kung University, Taiwan, Jun. 2011.
[16]B. Razavi, Principle of Data Conversion System Design, AT&T. 1995.
[17]P. Allen and D. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
[18]Erkan Alpman, “A 7-bit 2.5GS/sec Time-Interleaved C-2C SAR ADC For 60 GHz Multi-Band OFDM-Based Receivers, Ph. D. Thesis, Carnegie Mellon University, U.S.A., Aug. 2009.
[19]K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-Capacitor Circuits with Reduced Sensitivity to Amplifier Gain, IEEE Trans. Circuit Syst., vol. 34, pp. 571-574, May 1987.
[20]U-F. Chio, H.-G. Wei, Y. Zhu, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “ Design and Experimental Verification of a Power Effective Flash-SAR Subranging ADC, IEEE Transactions on Circuits and Systems - II, vol.57, no.8, pp.607-611, Aug. 2008.
[21]J. Craninckx and G. Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to0.7mW 9b Charge-sharing SAR ADC in 90nm Digital CMOS, IEEE ISSCC Dig. Tech. Papers, pp. 246-247, Feb. 2007.
[22]Guan-Ying Huang, “Design of Energy Efficient Successive-Approximation Analog-to-Digital Converter,M.S. Thesis, National Cheng Kung University, Taiwan, Jul. 2007.
[23]J. L. McCreary and P. R. Grey, “All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques-Part I, IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 371-379, Dec. 1975.
[24]S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS, IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
[25]J. Yang, T. L. Naing, and R. W. Brodersen, “A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing, IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1469-1478, Aug. 2010.
[26]B. P. Ginsburg and A. P. Chandrakasan, “An Energy-Efficient Charge Recycling Approach for a SAR Converter with Capacitive DAC, in Proc. IEEE Int. Symp. Circuits and Systems, pp. 184-187, May 2005.
[27]B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with Split Capacitor Array DAC, IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April. 2007.
[28]Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications, IEEE A-SSCC Dig. Tech. Papers, pp. 228-231, Nov. 2007.
[29]Hariprasath, J. Guerber, S.-H. Lee, and U.-K. Moon, “Merged Capacitor Switching Based SAR ADC with Highest Switching Energy-Efficiency, Electronics Letters, vol. 46, no. 9, pp. 620-621, Apr. 2010.
[30]Zhu, C.-H. Chan, U-Fat Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS, IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
[31]Y. Chen, et. al., “Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC, in Proc. of IEEE CICC, 2009
[32]P. Harpe, C. Zhou, X. Wang, G. Dolmans, and H. de Groot, “A 12-fJ/conversion-step 8-Bit 10-MS/s Synchronous SAR ADC for Low Energy Radios, in Proc. of ESSCIRC, 2010
[33]S. J. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS Transistor Mismatch, IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 147-150, Jan. 1998.
[34]Z. Cao, S. Yan, and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm CMOS, IEEE ISSCC Dig. Tech. Papers, pp. 542-543, Feb. 2008.
[35]G.-Y. Huang, C.-C. Liu, Y.-Z. Lin , and S.-J. Chang, “A 10-bit 12-MS/s Successive Approximation ADC with 1.2-pF Input Capacitance, IEEE A-SSCC Dig. Tech. Papers, pp. 157-160, Nov. 2009.
[36]M. Furta, M. Nozawa, and T. Italura, “A 0.06mm2 8.9b ENOB 40MS/s Pipelined SAR ADC in 65nm CMOS, in IEEE ISSCC Dig. Tech. Papers, pp. 382-383, Feb. 2010.
[37]H.-Y. Lee, D. Gubbins, B. Lee, and U.-K. Moon, “A 0.7V 810μW 10b 30MS/s Comparator-Based Two-Step Pipelined ADC, in Proc. of IEEE CICC, 2011
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊