跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱柄麟
研究生(外文):Ping-LingChu
論文名稱:應用同質紋理檢測之快速視差傳遞立體匹配演算法及其VLSI實現
論文名稱(外文):Stereo Matching Algorithm with Fast Disparity Propagation under Homogeneous Texture Detection and Its VLSI Implementation
指導教授:劉濱達楊家輝楊家輝引用關係
指導教授(外文):Bin-Da LiuBin-Da Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:73
中文關鍵詞:立體匹配同質紋理檢測視差傳遞
外文關鍵詞:Stereo matchinghomogeneous texture detectiondisparity propagation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
Abstract (Chinese) i
Abstract (English) iii
Acknowledgement v
Table of Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization for the Thesis 3
Chapter 2 Basic Concepts of Stereo Matching 5
2.1 Introduction of stereoscopic image 5
2.2 Introduction of stereo matching 7
2.2.1 Cost initialization 9
2.2.2 Cost aggregation 10
2.2.3 Disparity optimization 11
2.2.4 Disparity refinement 12
2.3 Related Works 13
2.3.1 Global stereo matching algorithm 13
2.3.2 Local stereo matching algorithm 14
2.3.3 Adaptive support weight (ASW) 14
2.3.4 Cross-based stereo matching using orthogonal integral images 17
2.3.5 Hardware implementation algorithms 20
Chapter 3 The Proposed Stereo Matching Algorithm 23
3.1 Block diagram of the proposed algorithm 23
3.2 Modified Low Complexity Adaptive Support Weight 24
3.3 Disparity Propagation Algorithm 30
3.4 Disparity Refinement 37
3.5 VLSI Implementation 41
3.5.1 System Controller 41
3.5.2 Texture Detection Unit 42
3.5.3 Cost Aggregation and WTA Unit 43
3.5.4 Disparity Propagation Unit 45
Chapter 4 Simulation Results and Comparisons 47
4.1 Experimental Environment Settings 47
4.2 Parameter Settings and Experimental Results 53
4.3 Hardware Implementation and Experimental Results 58
Chapter 5 Conclusions and Future Work 65
5.1 Conclusions 65
5.2 Future Work 66
References 69
Biography 73


[1]C. Fehn, K. Hopf, and B. Quante, “Key technologies for an advanced 3D TV system, in Proc. SPIE Three-Dimensional TV, Video, and Display Ⅲ, Oct. 2004, pp. 66-80.
[2]C. Fehn, R. D. L. Barre, and S. Pastoor, “Interactive 3-DTV: concepts and key technologies, Proc. IEEE, vol. 94, pp. 524-538, Mar. 2006.
[3]L. H. Wang, X. J. Huang, M. Xi, D. X. Li, and M. Zhang, “An asymmetric edge adaptive filter for depth generation and hole filling in 3DTV, IEEE Trans. Broadcast., vol. 56, pp. 425-431, Sept. 2010.
[4]I. Daribo and H. Saito, “A novel inpainting-based layered depth video for 3DTV, IEEE Trans. Broadcast., vol. 57, pp.533-541, June 2011.
[5]Y. Kuk-Jin and K. In So, “Adaptive support-weight approach for correspondence search, IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, pp. 650-656, Apr. 2006.
[6]T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: theory and experiment, IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, pp. 920-932, Sept. 1994.
[7]Y. Boykov, O. Veksler, and R. Zabih, “A variable window approach to early vision, IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 1283-1294, Dec. 1998.
[8]O. Veksler, “Stereo correspondence with compact windows via minimum ratio cycle, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 1654-1660, Dec. 2002.
[9]Z. Ke, L. Jiangbo, and G. Lafruit, “Cross-based local stereo matching using orthogonal integral images, IEEE Trans. Circuits Syst. Video Technol., vol. 19, pp. 1073-1079, July 2009.
[10]O. Veksler, “Fast variable window for stereo correspondence using integral images, in Proc. IEEE Comput. Vision and Pattern Recognition, June 2003, pp. 556-561.
[11]Y. Zhang and C. Kambhamettu, “Stereo matching with segmentation-based cooperation, in Proc. Eur. Conf. Comput Vision, Copenhagen, Denmark, May 2002, pp. 556-571.
[12]H. Lim and H. Park, “A dense disparity estimation method using color segmentation and energy minimization, in Proc. IEEE Image Process., Oct. 2006, pp. 1033-1036.
[13]M. Gong and Y. Yee-Hong, “Fast stereo matching using reliability-based dynamic programming and consistency constraints, in Proc. IEEE Comput. Vision, Oct. 2003, pp. 610-617.
[14]K. Jae Chul, L. Kyoung Mu, C. Byoung Tae, and L. Sang Uk, “A dense stereo matching using two-pass dynamic programming with generalized ground control points, in Proc. IEEE CVPR, June 2005, pp. 1075-1082.
[15]W. Yichen and Q. Long, “Region-based progressive stereo matching, in Proc. IEEE CVPR, June 2004, pp. I-106 - I-113.
[16]S. Xun, M. Xing, J. Shaohui, Z. Mingcai, and W. Haitao, “Stereo matching with reliable disparity propagation, in Proc. IEEE 3DIMPVT, May 2011, pp. 132-139.
[17]D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, in Proc. IEEE SMBV, Dec. 2001, pp. 131-140.
[18]D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light, in Proc. IEEE CVPR, June 2003, pp. I-195-I-202.
[19]D. Scharstein and C. Pal, “Learning conditional random fields for stereo, in Proc. IEEE CVPR, June 2007, pp. 1-8.
[20]H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching, in Proc. IEEE CVPR, June 2007, pp. 1-8.
[21]Middlebury Stereo Vision Page [Online]. Availale: http://vision.middlebury.edu/stereo
[22]A. F. Bobick and S. S. Intille, “Large occlusion stereo, Int. J. of Comput. Vision, vol. 33, pp. 181-200, Sept. 1999.
[23]Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 1222-1239, Aug. 2001.
[24]P. F. Felzenszwalb and D. R. Huttenlocher, “Efficient belief propagation for early vision, in Proc. IEEE CVPR, June 2004, pp. I-261-I-268.
[25]T. Kanade, H. Kano, S. Kimura, A. Yoshida, and K. Oda, “Development of a video-rate stereo machine, in Proc. IEEE Intell. Robots and Syst., Aug. 1995, pp. 95-100.
[26]C. Georgoulas and I. Andreadis, “A real-time occlusion aware hardware structure for disparity map computation, In Proc. Image Anal. and Process, Vietri sul Mare, Italy, June 2009, pp. 721-730.
[27]K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, “A SAD-based stereo matching using FPGAs, In Proc. Embedded Comput. Vision, Kyoto, Japan, 2009, pp. 121-138.
[28]A. Darabiha, J. MacLean, and J. Rose, “Reconfigurable hardware implementation of a phasecorrelation stereo algorithm, Mach. Vision Appl., vol. 17, pp. 116–132, Apr. 2006.
[29]S. Jin, J. Cho, X. D. Pham, K. M. Lee, S-K. Park, M. Kim, and J. W. Jeon, “FPGA design and implementation of a real-time stereo vision system, IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 15-26, Jan. 2010.
[30]K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision, Comput. Vision and Image Understanding, vol. 115, pp. 1303-1316, Feb. 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top