跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳兆芸
研究生(外文):Chao-YunChen
論文名稱:適應性干擾補償應用於輪廓追隨問題之研究
論文名稱(外文):Adaptive Disturbance Compensation and its Applications to Contour Following Problems
指導教授:鄭銘揚鄭銘揚引用關係
指導教授(外文):Ming-Yang Cheng
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:132
中文關鍵詞:輪廓追隨適應性干擾補償速度場畢氏速端五次雲形線插值器
外文關鍵詞:contour followingadaptive disturbance compensationvelocity fieldPythagorean Hodograph quintic splines interpolator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
於輪廓追隨應用中,降低輪廓誤差為一重要課題。為了減輕模型不確定性與外部干擾所造成的影響,使輪廓追隨運動達到令人滿意的循跡精度,本論文提出一適應性干擾補償架構對建模不精確與外部干擾所造成的不良副作用進行補償。適應性干擾補償之原理為透過適應性參數調變法則進行干擾補償器之增益調變,使得實際系統之輸出在補償後可準確地追隨常態模型的輸出。本論文所提出之適應性干擾量補償架構有兩個主要特點  干擾量/不確定性抑制與負載轉矩估測。其次,若將欲追隨之輪廓以時間函數之位置命令表示,則應用於輪廓追隨控制問題時可能會產生徑向內縮的現象。為克服此一問題,本論文利用格子點方式建構欲追隨輪廓之速度場。此外,於去毛邊、切削與拋光等特定工業應用中,皆需要同時進行力量控制與輪廓追隨,若欲追隨之輪廓其數學模型為未知,則控制問題將變得更具挑戰性。為此,本論文發展一基於視覺之畢氏速端五次雲形線插值器來產生運動命令,其中插值器之實現採用S型加減速規劃。最後,輪廓追隨實驗結果顯示本論文所提方法皆可滿足性能要求。
In contour following applications, contour error reduction is a subject of much concern. In order to reduce the influence of modeling uncertainty and external disturbance so as to achieve satisfactory contouring accuracy, this dissertation proposes an adaptive disturbance compensation (ADC) scheme to compensate for adverse effects due to inaccurate modeling and external disturbances. The rationale of the proposed ADC is to adaptively adjust the compensator gains so that the output of the actual plant after compensation will faithfully follow the output of the nominal model. The major benefits of the ADC are twofold: disturbance/uncertainties suppression and load torque estimation. In addition, if the contour to be followed is represented by the position command which is function of time, the so-called radial reduction phenomenon may occur. In order to cope with this problem, this dissertation proposes a grid-point-based velocity field approach for encoding the contour to be followed. Furthermore, several industrial applications such as deburring, cutting and polishing, are required to simultaneously perform force control and contour following. If the mathematical model for the contour to be followed is unknown, the control problem will become much more challenging. To this end, this dissertation develops a vision-based Pythagorean Hodograph quintic splines interpolator that adopts S-curve acceleration/deceleration to generate motion commands. Finally, experimental results indicate that all of the proposed approaches exhibit satisfactory performance.
摘要......................................................I
Abstract.................................................II
致謝.....................................................III
Acknowledgment...........................................IV
Contents..................................................V
List of Tables.........................................VIII
List of Figures..........................................IX
Chapter 1.................................................1
1.1 Motivation............................................1
1.2 The Existing Schemes and Literature Review............3
1.2.1 Disturbance Attenuation.............................3
1.2.2 Contour Error Reduction.............................8
1.2.3 Contour Following for Unknown Objects..............13
1.2.4 Comparisons of the Existing Schemes................13
1.3 The Proposed Approaches and Contributions of this
Dissertation.........................................16
1.3.1 The Proposed Approaches............................16
1.3.2 Contributions of this Dissertation.................19
1.4 Organization of the Dissertation.....................21
Chapter 2................................................22
2.1 Introduction.........................................22
2.2 Velocity Control of Servomechanism with Friction.....25
2.3 Adaptive Disturbance Compensation and Stability Analysis
.....................................................28
2.3.1 The Structure of the Proposed ADC..................28
2.3.2 Stability Analysis of the Proposed ADC.............33
2.4 Experimental Setup and Results.......................37
2.4.1 Experimental Setup.................................37
2.4.2 Experimental Results...............................42
2.5 Summary..............................................51
Chapter 3................................................52
3.1 Introduction.........................................52
3.2 Velocity Field Construction for Planar Contour
Following Tasks......................................54
3.2.1 Grid Point Based Velocity Field Construction.......55
3.2.2 Velocity Field Construction for Planar Contour
Following Tasks....................................58
3.3 Integrated Motion Control Design for a Planar Robot
Manipulator..........................................59
3.3.1 Velocity Field Control Based on the Lyapunov Function
...................................................59
3.3.2 Disturbance Attenuation by the Proposed ADC........62
3.3 Stability Analysis of the Proposed ADC..............67
3.4 Experimental Results.................................71
3.4.1 Experimental Setup.................................71
3.4.2 Experimental Results of Contour Following..........73
3.5 Summary..............................................81
Chapter 4................................................82
4.1 Introduction.........................................82
4.2 Review of PH Curve and PH Spline.....................85
4.2.1 PH Curve...........................................85
4.2.2 Curve Length and Unit Tangent Vector of PH Curve...88
4.2.3 C2 PH Quintic Spline...............................89
4.3 Vision Based Unknown Object Contour Detection........91
4.4 PH Quintic Spline Interpolator.......................96
4.5 Control Structure Design............................100
4.6 Experimental Setup and Results......................106
4.6.1 Experimental Setup................................106
4.6.2 Camera Calibration................................107
4.6.3 Experimental Results..............................110
4.7 Summary.............................................113
Chapter 5...............................................114
5.1 Conclusions.........................................114
5.2 Future Works........................................115
References..............................................117
Publication List........................................131
Vita....................................................132

[1]K. Narendra and L. Valavani, “Stable adaptive controller design--Direct control, IEEE Transactions on Automatic Control, vol. 23, pp. 570-583, 1978.
[2]K. Åström, “Theory and applications of adaptive control--A survey, Automatica, vol. 19, pp. 471-486, 1983.
[3]G. Kreisselmeier and B. Anderson, “Robust model reference adaptive control, IEEE Transactions on Automatic Control, vol. 31, pp. 127-133, 1986.
[4]G. Goodwin and D. Mayne, “A parameter estimation perspective of continuous time model reference adaptive control, Automatica, vol. 23, pp. 57-70, 1987.
[5]L. Hsu and R. R. Costa, “Variable structure model reference adaptive control using only input and output measurements, International Journal of Control, vol. 49, pp. 399-416, 1989.
[6]W. S. Lee, B. Anderson, R. L. Kosut, and I. M. Y. Mareels, “A new approach to adaptive robust control, International Journal of Adaptive Control and Signal Processing, vol. 7, pp. 183-211, 1993.
[7]K. J. Astrom and B. Wittenmark, Adaptive Control: Addison-Wesley Longman Publishing Co., Inc., 1994.
[8]G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown dead-zones, IEEE Transactions on Automatic Control, vol. 39, pp. 59-68, 1994.
[9]A. Alleyne and J. K. Hedrick, “Nonlinear adaptive control of active suspensions, IEEE Transactions on Control Systems Technology, vol. 3, pp. 94-101, 1995.
[10]M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control design, Addison-Wesley, 1995.
[11]G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown hystereses, IEEE Transactions on Automatic Control, vol. 40, pp. 200-212, 1995.
[12]M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear control design, Automatica, vol. 32, pp. 423-427, 1996.
[13]G. Tao, Adaptive Control Design and Analysis, Wiley-IEEE Press, 2003.
[14]E. Lavretsky, “Combined/composite model reference adaptive control, IEEE Transactions on Automatic Control, vol. 54, pp. 2692-2697, 2009.
[15]S. Komada, M. Ishida, K. Ohnishi, and T. Hori, “Motion control of linear synchronous motors based on disturbance observer, in Proc. 16th IEEE Annual Conf. (IECON), Pacific Grove, CA , 1990, pp. 154-159.
[16]H. S. Lee and M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems, IEEE Transactions on Industrial Electronics, vol. 43, pp. 48-55, 1996.
[17]K. Ohnishi, M. Shibata, and T. Murakami, “Motion control for advanced mechatronics, IEEE/ASME Transactions on Mechatronics, vol. 1, pp. 56-67, 1996.
[18]P. Korondi, D. Young, and H. Hashimoto, “Sliding mode based disturbance observer for motion control, in Proc. 37th IEEE Conf. Decision and Control, Dec. 1998, pp. 1926-1927.
[19]X. Chen, T. Fukuda, and K. D. Young, “A new nonlinear robust disturbance observer, Systems & control letters, vol. 41, pp. 189-199, 2000.
[20]X. Chen, S. Komada, and T. Fukuda, “Design of a nonlinear disturbance observer, IEEE Transactions on Industrial Electronics, vol. 47, pp. 429-437, 2000.
[21]C. S. Liu and H. Peng, “Disturbance observer based tracking control, Journal of dynamic systems, measurement, and control, vol. 122, p. 332, 2000.
[22]E. Schrijver and J. Van Dijk, “Disturbance observers for rigid mechanical systems: equivalence, stability, and design, Journal of dynamic systems, measurement, and control, vol. 124, p. 539, 2002.
[23]B. K. Kim and W. K. Chung, “Advanced disturbance observer design for mechanical positioning systems, IEEE Transactions on Industrial Electronics, vol. 50, pp. 1207-1216, 2003.
[24]W. H. Chen, “Disturbance observer based control for nonlinear systems, IEEE/ASME Transactions on Mechatronics, vol. 9, pp. 706-710, 2004.
[25]H. Kobayashi, S. Katsura, and K. Ohnishi, “An analysis of parameter variations of disturbance observer for motion control, IEEE Transactions on Industrial Electronics, vol. 54, pp. 3413-3421, 2007.
[26]K. B. Lee and F. Blaabjerg, “Robust and stable disturbance observer of servo system for low-speed operation, IEEE Transactions on Industry Applications, vol. 43, pp. 627-635, 2007.
[27]X. Wei and L. Guo, “Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances, International Journal of control, vol. 82, pp. 1082-1098, 2009.
[28]Z. Gao, “Active disturbance rejection control: a paradigm shift in feedback control system design, in Proc. American Control Conf., Minneapolis, MN, June 14-16, 2006, ThA09.2.
[29]F. J. Goforth and Z. Gao, “An active disturbance rejection control solution for hysteresis compensation, in Proc. American Control Conf., Statesboro, GA, June 11-13, 2008, pp. 2202-2208.
[30]J. Han, “From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics, vol. 56, pp. 900-906, 2009.
[31]D. Wu and K. Chen, “Design and analysis of precision active disturbance rejection control for noncircular turning process, IEEE Transactions on Industrial Electronics, vol. 56, pp. 2746-2753, 2009.
[32]X. Yang and Y. Huang, “Capabilities of extended state observer for estimating uncertainties, in Proc. American Control Conf., St. Louis, MO, June 10-12, 2009, pp. 3700-3705.
[33]X. Shi, S. Liu, and F. Liu, “New robust control strategy for module manipulators via sliding mode control with an extended state observer, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 224, pp. 545-555, 2010.
[34]S. E. Talole, J. P. Kolhe, and S. B. Phadke, “Extended-State-Observer-Based Control of Flexible-Joint System With Experimental Validation, IEEE Transactions on Industrial Electronics, vol. 57, pp. 1411-1419, 2010.
[35]S. Zhao and Z. Gao, “An active disturbance rejection based approach to vibration suppression in two-inertia systems, in Proc. American Control Conf., Cleveland, OH, June 30-July 2, 2010, pp. 1520-1525.
[36]B. Z. Guo and Z. Zhao, “On the convergence of an extended state observer for nonlinear systems with uncertainty, Systems & Control Letters, vol. 60, no. 6, pp. 420-430, 2011.
[37]Y. Xia, Z. Zhu, and M. Fu, “Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, vol. 5, pp. 93-102, 2011.
[38]R. Yang, M. Sun, and Z. Chen, “Active disturbance rejection control on first-order plant, Journal of Systems Engineering and Electronics, vol. 22, pp. 95-102, 2011.
[39]M. Kordasz, R. Madoński, M. Przybyła, and P. Sauer, “Active Disturbance Rejection Control for a Flexible-Joint Manipulator, Leture Notes in Control and Information Sciences, pp. 247-256, 2012.
[40]Y. Xia, B. Liu, and M. Fu, “Active disturbance rejection control for power plant with a single loop, Asian Journal of Control, vol. 14, no. 1, pp. 239-250, 2012.
[41]S. Singh, “Adaptive model following control of nonlinear robotic systems, IEEE Transactions on Automatic Control, vol. 30, pp. 1099-1100, 1985.
[42]T. P. Leung, Q. J. Zhou, and C. Y. Su, “An adaptive variable structure model following control design for robot manipulators, IEEE Transactions on Automatic Control, vol. 36, pp. 347-353, 1991.
[43]S. H. Huh and Z. Bien, “Robust sliding mode control of a robot manipulator based on variable structure-model reference adaptive control approach, IET Control Theory & Applications, vol. 1, pp. 1355-1363, 2007.
[44]B. M. Mirkin and P. O. Gutman, “Model reference adaptive control of state delayed system with actuator failures, International Journal of Control, vol. 78, pp. 186-195, 2005.
[45]K. K. Shyu, M. J. Yang, Y. M. Chen, and Y. F. Lin, “Model reference adaptive control design for a shunt active-power-filter system, IEEE Transactions on Industrial Electronics, vol. 55, pp. 97-106, 2008.
[46]R. Guo, J. Chen, and X. Hao, “Position servo control of a DC electromotor using a hybrid method based on model reference adaptive control (MRAC), in Proc. Int. Conf. Computer, Mechatronics, Control and Electronic Engineering, Changchun, Aug. 24-26, 2010, pp. 534-537.
[47]Y. T. Liu, K. M. Chang, and W. Z. Li, “Model reference adaptive control for a piezo-positioning system, Precision engineering, vol. 34, pp. 62-69, 2010.
[48]H. Berghuis, R. Ortega, and H. Nijmeijer, “A robust adaptive robot controller, IEEE Transactions on Robotics and Automation, vol. 9, pp. 825-830, 1993.
[49]L. L. Whitcomb, A. A. Rizzi, and D. E. Koditschek, “Comparative experiments with a new adaptive controller for robot arms, IEEE Transactions on Robotics and Automation, vol. 9, pp. 59-70, 1993.
[50]F. Alonge, F. D'Ippolito, and F. Raimondi, “An adaptive control law for robotic manipulator without velocity feedback, Control engineering practice, vol. 11, pp. 999-1005, 2003.
[51]P. Tomei, “Robust adaptive friction compensation for tracking control of robot manipulators, IEEE Transactions on Automatic Control, vol. 45, pp. 2164-2169, 2000.
[52]P. R. Pagilla and M. Tomizuka, “An adaptive output feedback controller for robot arms: stability and experiments, Automatica, vol. 37, pp. 983-995, 2001.
[53]K. Tan, S. Huang, H. Dou, T. Lee, S. Chin, and S. Lim, “Adaptive robust motion control for precise trajectory tracking applications, ISA Transactions, vol. 40, pp. 57-71, 2001.
[54]G. Tao, S. M. Joshi, and X. Ma, “Adaptive state feedback and tracking control of systems with actuator failures, IEEE Transactions on Automatic Control, vol. 46, pp. 78-95, 2001.
[55]B. Yao and M. Tomizuka, “Adaptive control of robot manipulators in constrained motion—Controller design, Journal of dynamic systems, measurement, and control, vol. 117, p. 320, 1995.
[56]B. Yao, M. Al-Majed, and M. Tomizuka, “High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Transactions on Mechatronics, vol. 2, pp. 63-76, 1997.
[57]B. Yao and L. Xu, “Adaptive robust motion control of linear motors for precision manufacturing, Mechatronics, vol. 12, pp. 595-616, 2002.
[58]Y. Hong and B. Yao, “A globally stable high-performance adaptive robust control algorithm with input saturation for precision motion control of linear motor drive systems, IEEE/ASME Transactions on Mechatronics, vol. 12, pp. 198-207, 2007.
[59]Y. Hong and B. Yao, “A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments, Automatica, vol. 43, pp. 1840-1848, 2007.
[60]J. Zhong and B. Yao, “Adaptive robust precision motion control of a piezoelectric positioning stage, IEEE Transactions on Control Systems Technology, vol. 16, pp. 1039-1046, 2008.
[61]J. Ishikawa and M. Tomizuka, “Pivot friction compensation using an accelerometer and a disturbance observer for hard disk drives, IEEE/ASME Transactions on Mechatronics, vol. 3, pp. 194-201, 1998.
[62]E. Schrijver and J. Van Dijk, “Disturbance observers for rigid mechanical systems: equivalence, stability, and design, Journal of dynamic systems, measurement, and control, vol. 124, p. 539, 2002.
[63]B. K. Kim and W. K. Chung, “Advanced disturbance observer design for mechanical positioning systems, IEEE Transactions on Industrial Electronics, vol. 50, pp. 1207-1216, 2003.
[64]H. S. Kim, H. T. Moon, and M. J. Youn, “On-line dead-time compensation method using disturbance observer, IEEE Transactions on Power Electronics, vol. 18, pp. 1336-1345, 2003.
[65]M. Iwasaki, T. Shibata, and N. Matsui, “Disturbance-observer-based nonlinear friction compensation in table drive system, IEEE/ASME Transactions on Mechatronics, vol. 4, pp. 3-8, 1999.
[66]C. J. Kempf and S. Kobayashi, “Disturbance observer and feedforward design for a high-speed direct-drive positioning table, IEEE Transactions on Control Systems Technology, vol. 7, pp. 513-526, 1999.
[67]S. H. Choi, J. S. Ko, I. D. Kim, J. S. Park, and S. C. Hong, “Precise position control using a PMSM with a disturbance observer containing a system parameter compensator, IEE Proceedings Electric Power Applications, vol. 6, pp. 1573-1577, Nov. 2005.
[68]A. Hace, K. Jezernik, and A. Sabanovic, “SMC with disturbance observer for a linear belt drive, IEEE Transactions on Industrial Electronics, vol. 54, pp. 3402-3412, 2007.
[69]J. Yi, S. Chang, and Y. Shen, “Disturbance-observer-based hysteresis compensation for piezoelectric actuators, IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 456-464, 2009.
[70]R. Furusawa, T. Asai, K. Ohishi, K. Majima, K. Kageyama, M. Takatsu, and S. Urushihara, “High-performance sensorless injection force control based on nonlinear friction phenomenon, in Proc. 36th Annual Conf. IEEE Industrial Electronics Society,, Glendale, AZ, Nov. 7-10, 2010, pp. 864-869.
[71]Y. Ohba, M. Sazawa, K. Ohishi, T. Asai, K. Majima, Y. Yoshizawa, and K. Kageyama, “Sensorless force control for injection molding machine using reaction torque observer considering torsion phenomenon, IEEE Transactions on Industrial Electronics, vol. 56, pp. 2955-2960, 2009.
[72]T. Murakami, R. Nakamura, F. Yu, and K. Ohnishi, “Force sensorless impedance control by disturbance observer, in Proc. Power Conversion Conf., Apr. 19-21, 1993, pp. 352-357.
[73]S. Katsura, Y. Matsumoto, and K. Ohnishi, “Modeling of force sensing and validation of disturbance observer for force control, IEEE Transactions on Industrial Electronics, vol. 54, pp. 530-538, 2007.
[74]S. Katsura, Y. Matsumoto, and K. Ohnishi, “Analysis and experimental validation of force bandwidth for force control, IEEE Transactions on Industrial Electronics, vol. 53, pp. 922-928, 2006.
[75]M. S. Erden and T. Tomiyama, “Human-intent detection and physically interactive control of a robot without force sensors, IEEE Transactions on Robotics, vol. 26, pp. 370-382, 2010.
[76]S. Oh and Y. Hori, “Sensor free power assisting control based on velocity control and disturbance observer, in Proc. IEEE Int. Sym. Industrial Electronics, June 20-23, 2005, pp. 1709-1714.
[77]T. Murakami, F. Yu, and K. Ohnishi, “Torque sensorless control in multidegree-of-freedom manipulator, IEEE Transactions on Industrial Electronics, vol. 40, pp. 259-265, 1993.
[78]K. S. Eom, I. H. Suh, W. K. Chung, and S. R. Oh, “Disturbance observer based force control of robot manipulator without force sensor, in Proc. IEEE Int. Conf. Robotics and Automation, Leuven, May 16-20, 1998, pp. 3012-3017 vol. 4.
[79]H. Liu and S. Li, “Speed Control for PMSM Servo System Using Predictive Functional Control and Extended State Observer, IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1171-1183, 2012.
[80]Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 265-272, 1980.
[81]S. S. Yeh and P. L. Hsu, “Estimation of the contouring error vector for the cross-coupled control design, IEEE/ASME Transactions on Mechatronics, vol. 7, pp. 44-51, 2002.
[82]S. S. Yeh and P. L. Hsu, “Analysis and design of integrated control for multi-axis motion systems, IEEE Transactions on Control Systems Technology, vol. 11, pp. 375-382, 2003.
[83]K. L. Barton and A. G. Alleyne, “A cross-coupled iterative learning control design for precision motion control, IEEE Transactions on Control Systems Technology, vol. 16, pp. 1218-1231, 2008.
[84]C. C. Lo and C. Y. Chung, “Tangential-contouring controller for biaxial motion control, Journal of Dynamic Systems, Measurement, and Control, vol. 121, p. 126, 1999.
[85]M. Y. Cheng and C. C. Lee, “Motion controller design for contour-following tasks based on real-time contour error estimation, IEEE Transactions on Industrial Electronics, vol. 54, pp. 1686-1695, 2007.
[86]G. T. C. Chiu and M. Tomizuka, “Coordinated position control of multi-axis mechanical systems, Journal of Dynamic Systems, Measurement, and Control, vol. 120, p. 389, 1998.
[87]B. Yao, C. Hu, and Q. Wang, “An Orthogonal Global Task Coordinate Frame for Contouring Control of Biaxial Systems, IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp. 1-13, 2011.
[88]P. Y. Li, “Coordinated contour following control for machining operations-a survey, in Proc. American Control Conf. 1999, pp. 4543-4547.
[89]P. Y. Li and R. Horowitz, “Passive velocity field control of mechanical manipulators, IEEE Transactions on Robotics and Automation, vol. 15, pp. 751-763, 1999.
[90]I. Cervantes, R. Kelly, J. Alvarez-Ramirez, and J. Moreno, “A robust velocity field control, IEEE Transactions on Control Systems Technology, vol. 10, pp. 888-894, 2002.
[91]J. S. Bay and H. Hemami, “Dynamics of a learning controller for surface tracking robots on unknown surfaces, IEEE Transactions on Automatic Control, vol. 35, pp. 1051-1054, 1990.
[92]R. E. Goddard, Y. Zheng, and H. Hemami, “Dynamic hybrid velocity/force control of robot compliant motion over globally unknown objects, IEEE Transactions on Robotics and Automation, vol. 8, pp. 132-138, 1992.
[93]T. Furukawa, D. Rye, M. Dissanayake, and A. Barratt, “Automated polishing of an unknown three-dimensional surface, Robotics and computer-integrated manufacturing, vol. 12, pp. 261-270, 1996.
[94]K. Kiguchi and T. Fukuda, “Intelligent position/force controller for industrial robot manipulators-application of fuzzy neural networks, IEEE Transactions on Industrial Electronics, vol. 44, pp. 753-761, 1997.
[95]S. Jung and T. Hsia, “Robust neural force control scheme under uncertainties in robot dynamics and unknown environment, IEEE Transactions on Industrial Electronics, vol. 47, pp. 403-412, 2000.
[96]K. Kiguchi and T. Fukuda, “Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks, IEEE Transactions on Industrial Electronics, vol. 47, pp. 641-649, 2000.
[97]Y. Yin, H. Hu, and Y. Xia, “Active tracking of unknown surface using force sensing and control technique for robot, Sensors and Actuators A: Physical, vol. 112, pp. 313-319, 2004.
[98]M. Namvar and F. Aghili, “Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments, IEEE Transactions on Robotics, vol. 21, pp. 678-694, 2005.
[99]G. Ziliani, G. Legnani, and A. Visioli, “A mechatronic design for robotic deburring, in Proc. IEEE Int. Sym. Industrial Electronics, June 20-23, 2005, pp. 1575-1580.
[100]G. Ziliani, A. Visioli, and G. Legnani, “A mechatronic approach for robotic deburring, Mechatronics, vol. 17, pp. 431-441, 2007.
[101]D. Xiao, B. K. Ghosh, N. Xi, and T. Tarn, “Sensor-based hybrid position/force control of a robot manipulator in an uncalibrated environment, IEEE Transactions on Control Systems Technology, vol. 8, pp. 635-645, 2000.
[102]A. Visioli, G. Ziliani, and G. Legnani, “Iterative-learning hybrid force/velocity control for contour tracking, IEEE Transactions on Robotics, vol. 26, pp. 388-393, 2010.
[103]J. Baeten and J. De Schutter, “Combined vision/force control at corners in planar robotic contour following, in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatconics, 2001, pp. 810-815.
[104]J. Baeten, H. Bruyninckx, and J. De Schutter, “Shared control in hybrid vision/force robotic servoing using the task frame, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2002, pp. 2128-2133.
[105]J. Baeten and J. De Schutter, “Hybrid vision/force control at corners in planar robotic-contour following, IEEE/ASME Transactions on Mechatronics, vol. 7, pp. 143-151, 2002.
[106]J. Baeten, H. Bruyninckx, and J. De Schutter, “Integrated vision/force robotic servoing in the task frame formalism, The International Journal of Robotics Research, vol. 22, pp. 941-954, 2003.
[107]W. C. Chang, “Cartesian-based planar contour following with automatic hybrid force and visual feedback, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2004, pp. 3062-3067.
[108]W. C. Chang, “Hybrid force and vision-based contour following of planar robots, Journal of Intelligent & Robotic Systems, vol. 47, pp. 215-237, 2006.
[109]M. Moll and M. Erdmann, “Reconstructing the shape and motion of unknown objects with active tactile sensors, Algorithmic Foundations of Robotics V, vol. 7, pp. 293-310, 2004.
[110]A. C. Leite, F. Lizarralde, and L. Hsu, “Hybrid vision-force robot control for tasks on unknown smooth surfaces, in Proc. IEEE Int. Conf. Robotics and Automation, Orlando, FL, May 15-19, 2006, pp. 2244-2249.
[111]A. C. Leite, F. Lizarralde, and L. Hsu, “Hybrid adaptive vision—Force control for robot manipulators interacting with unknown surfaces, The International Journal of Robotics Research, vol. 28, pp. 911-926, 2009.
[112]K. H. Su and M. Y. Cheng, “Contouring accuracy improvement using cross-coupled control and position error compensator, International Journal of Machine Tools and Manufacture, vol. 48, pp. 1444-1453, 2008.
[113]M. Y. Cheng and Y. H. Wang, “Velocity field construction for contour following tasks represented in NURBS form, IEEE Transactions on Automatic Control, vol. 54, pp. 2405-2410, 2009.
[114]M. C. Tsai, I. F. Chiu, and M. Y. Cheng, “Design and implementation of command and friction feedforward control for CNC motion controllers, IEE Proceedings Control Theory and Applications, vol. 151, no. 1, pp. 13-20, 2004.
[115]C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control of systems with friction, Automatic Control, IEEE Transactions on, vol. 40, pp. 419-425, 1995.
[116]M. R. Kermani, R. V. Patel, and M. Moallem, “Friction identification and compensation in robotic manipulators, IEEE Transactions on Instrumentation and Measurement, vol. 56, pp. 2346-2353, 2007.
[117]L. Freidovich, A. Robertsson, A. Shiriaev, and R. Johansson, “LuGre-model-based friction compensation, IEEE Transactions on, vol Control Systems Technology. vol. 18, pp. 194-200, 2010.
[118]A. Elfizy, G. Bone, and M. Elbestawi, “Model-based controller design for machine tool direct feed drives, International Journal of Machine Tools and Manufacture, vol. 44, pp. 465-477, 2004.
[119]M. T. Yan and Y. J. Shiu, “Theory and application of a combined feedback-feedforward control and disturbance observer in linear motor drive wire-EDM machines, International Journal of Machine Tools and Manufacture, vol. 48, pp. 388-401, 2008.
[120]Z. J. Yang, H. Tsubakihara, S. Kanae, K. Wada, and C. Y. Su, “A novel robust nonlinear motion controller with disturbance observer, IEEE Transactions on Control Systems Technology, vol. 16, pp. 137-147, 2008.
[121]K. Jezernik and M. Rodic, “High precision motion control of servo drives, IEEE Transactions on Industrial Electronics, vol. 56, pp. 3810-3816, 2009.
[122]W. S. Huang, C. W. Liu, P. L. Hsu, and S. S. Yeh, “Precision control and compensation of servomotors and machine tools via the disturbance observer, IEEE Transactions on Industrial Electronics, vol. 57, pp. 420-429, 2010.
[123]J. S. Bang, H. Shim, S. K. Park, and J. H. Seo, “Robust tracking and vibration suppression for a two-inertia system by combining backstepping approach with disturbance observer, IEEE Transactions on Industrial Electronics, vol. 57, pp. 3197-3206, 2010.
[124]M. Iqbal, A. I. Bhatti, S. I. Ayubi, and Q. Khan, “Robust parameter estimation of nonlinear systems using sliding-mode differentiator observer, IEEE Transactions on Industrial Electronics, vol. 58, pp. 680-689, 2011.
[125]D. Wu, K. Chen, and X. Wang, “Tracking control and active disturbance rejection with application to noncircular machining, International Journal of Machine Tools and Manufacture, vol. 47, pp. 2207-2217, 2007.
[126]D. Wu and K. Chen, “Chatter suppression in fast tool servo-assisted turning by spindle speed variation, International Journal of Machine Tools and Manufacture, vol. 50, pp. 1038-1047, 2010.
[127]Y. Su, B. Duan, C. Zheng, Y. Zhang, G. Chen, and J. Mi, “Disturbance-rejection high-precision motion control of a Stewart platform, IEEE Transactions on Control Systems Technology, vol. 12, pp. 364-374, 2004.
[128]N. Uchiyama, “Adaptive two-degree-of-freedom control of feed drive systems, International Journal of Machine Tools and Manufacture, vol. 48, pp. 437-445, 2008.
[129]C. Hu, B. Yao, Q. Wang, Z. Chen, and C. Li, “Experimental investigation on high-performance coordinated motion control of high-speed biaxial systems for contouring tasks, International Journal of Machine Tools and Manufacture, 2011.
[130]Z. J. Yang, S. Hara, S. Kanae, K. Wada, and C. Y. Su, “An adaptive robust nonlinear motion controller combined with disturbance observer, IEEE Transactions on Control Systems Technology, vol. 18, pp. 454-462, 2010.
[131]T. H. Lee, K. K. Tan, and S. Huang, “Adaptive friction compensation with a dynamical friction model, IEEE/ASME Transactions on Mechatronics, vol. 16, pp. 133-140, 2011.
[132]J. C. Wu, K. H. Su, and M. Y. Cheng, “Friction and disturbance compensation for speed control of servo control systems, in Proc. 36th Annual Conf. IEEE Industrial Electronics Society, Glendale, AZ , Nov. 7-10, 2010, pp. 1890-1895.
[133]C. Y. Chen, M. Y. Cheng, J. C. Wu, and K. H. Su, “Passivity-based contour following control design with virtual plant disturbance compensation, in Proc. IEEE Int. Workshop on Advanced Motion Control, Nagaoka, Niigata, March 21-24, 2010, pp. 48-53.
[134]J. J. E. Slotine and W. Li, Applied nonlinear control vol. 199: Prentice-Hall Englewood Cliffs, NJ, 1991.
[135]W. D. Chang, R. C. Hwang, and J. G. Hsieh, “A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach, Journal of Process Control, vol. 12, pp. 233-242, 2002.
[136]J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of mechanical manipulators, IEEE Transactions on Automatic Control, vol. 25, pp. 468-474, 1980.
[137]H. Sage, M. De Mathelin, and E. Ostertag, “Robust control of robot manipulators: a survey, International Journal of Control, vol. 72, pp. 1498-1522, 1999.
[138]J. J. E. Slotine and W. Li, “On the adaptive control of robot manipulators, The International Journal of Robotics Research, vol. 6, pp. 49-59, 1987.
[139]S. Pigg and M. Bodson, “Adaptive algorithms for the rejection of sinusoidal disturbances acting on unknown plants, IEEE Transactions on Control Systems Technology, vol. 18, pp. 822-836, 2010.
[140]E. Panteley, R. Ortega, and M. Gäfvert, “An adaptive friction compensator for global tracking in robot manipulators, Systems & control letters, vol. 33, pp. 307-313, 1998.
[141]N. Hung, H. Tuan, T. Narikiyo, and P. Apkarian, “Adaptive control for nonlinearly parameterized uncertainties in robot manipulators, IEEE Transactions on Control Systems Technology, vol. 16, pp. 458-468, 2008.
[142]C. C. Cheng, S. H. Chien, and F. C. Shih, “Design of robust adaptive variable structure tracking controllers with application to rigid robot manipulators, IET Control Theory & Applications, vol. 4, pp. 1655-1664, 2010.
[143]W. H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O'Reilly, “A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics, vol. 47, pp. 932-938, 2000.
[144]K. S. Eom, I. H. Suh, and W. K. Chung, “Disturbance observer based path tracking control of robot manipulator considering torque saturation, Mechatronics, vol. 11, pp. 325-343, 2001.
[145]N. Lotfi and M. Namvar, “Global adaptive estimation of joint velocities in robotic manipulators, IET Control Theory & Applications, vol. 4, pp. 2672-2681, 2010.
[146]J. Liou and M. Jamshidi, “On the robust adaptive control of a contour-following robotic system, Robotics and autonomous systems, vol. 9, pp. 283-297, 1992.
[147]M. Galicki, “Adaptive path-constrained control of a robotic manipulator in a task space, Robotica, vol. 25, pp. 103-112, 2007.
[148]M. Y. Cheng, M. C. Tsai, and J. C. Kuo, “Real-time NURBS command generators for CNC servo controllers, International Journal of Machine Tools and Manufacture, vol. 42, pp. 801-813, 2002.
[149]K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence: McGraw-Hill, Inc., 1987.
[150]J. F. Gardner, Simulation of machines using MATLAB and SIMULINK, Thomson, Victoria, Australia, 2002.
[151]M. Y. Cheng and K. H. Su, “Contouring accuracy improvement using a tangential contouring controller with a fuzzy logic-based feedrate regulator, The International Journal of Advanced Manufacturing Technology, vol. 41, pp. 75-85, 2009.
[152]J. Jahanpour, M. C. Tsai, and M. Y. Cheng, “High-speed contouring control with NURBS-based C 2 PH spline curves, The International Journal of Advanced Manufacturing Technology, vol. 49, pp. 663-674, 2010.
[153]X. Wang, N. Liu, and M. Wang, “Research and implementation of high-precision biaxial tracking control system based on NURBS interpolator, The International Journal of Advanced Manufacturing Technology, vol. 52, pp. 255-262, 2011.
[154] J. Lee, W. E. Dixon, and J. C. Ziegert, “Adaptive nonlinear contour coupling control for a machine tool system, International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-011-3760-1.
[155]F. Nagata, T. Hase, Z. Haga, M. Omoto, and K. Watanabe, “CAD/CAM-based position/force controller for a mold polishing robot, Mechatronics, vol. 17, pp. 207-216, 2007.
[156]R. Osypiuk and B. Finkemeyer, “Hybrid model-based force/position control: theory and experimental verification, Robotica, vol. 24, p. 775, 2006.
[157]S. Jung, P. Jeon, and T. Hsia, “Contour tracking of an unknown planar object by regulating force for mobile robot navigation, Robotica, vol. 25, pp. 297-305, 2007.
[158]E. C. Dean-León, V. Parra-Vega, and A. Espinosa-Romero, “Visual servoing for constrained planar robots subject to complex friction,, IEEE/ASME Transactions on Mechatronic, vol. 11, pp. 389-400, 2006.
[159]R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and Automation, vol. 3, pp. 323-344, 1987.
[160]Z. Zhang, “A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1330-1334, 2000.
[161] Stoyanov D. Camera Calibration Tools. Available: http://www.doc.ic.ac.uk/~dvs/c
alib/main. html.
[162]X. Liu, F. Ahmad, K. Yamazaki, and M. Mori, “Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics, International Journal of Machine Tools and Manufacture, vol. 45, pp. 433-444, 2005.
[163]K. Erkorkmaz and Y. Altintas, “Quintic spline interpolation with minimal feed fluctuation, Journal of manufacturing science and engineering, vol. 127, pp. 339-349, 2005.
[164]M. S. Tsai, H. W. Nien, and H. T. Yau, “Development of integrated acceleration/deceleration look-ahead interpolation technique for multi-blocks NURBS curves, The International Journal of Advanced Manufacturing Technology, vol. 56, pp. 601-618, 2011.
[165]C. W. Cheng and M. C. Tsai, “Real-time variable feed rate NURBS curve interpolator for CNC machining, The International Journal of Advanced Manufacturing Technology, vol. 23, pp. 865-873, 2004.
[166]K. Erkorkmaz and Y. Altintas, “High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation, International Journal of Machine Tools and Manufacture, vol. 41, pp. 1323-1345, 2001.
[167]R. T. Farouki and T. Sakkalis, “Pythagorean hodographs, IBM Journal of Research and Development, vol. 34, pp. 736-752, 1990.
[168]R. A. M. T. Farouki, Pythagorean-hodograph curves: algebra and geometry inseparable vol. 1: Springer Verlag, 2008.
[169]R. T. Farouki and S. Shah, “Real-time CNC interpolators for Pythagorean-hodograph curves, Computer Aided Geometric Design, vol. 13, pp. 583-600, 1996.
[170]R. T. Farouki, B. K. Kuspa, C. Manni, and A. Sestini, “Efficient solution of the complex quadratic tridiagonal system for C2 PH quintic splines, Numerical Algorithms, vol. 27, pp. 35-60, 2001.
[171]F. Pelosi, M. L. Sampoli, R. T. Farouki, and C. Manni, “A control polygon scheme for design of planar C2 PH quintic spline curves, Computer Aided Geometric Design, vol. 24, pp. 28-52, 2007.
[172]J. Besag, “Digital Image Processing, Journal of Applied Statistics, vol. 16, pp. 395-407, 1989.
[173]E. R. Davies and E. Davies, Machine vision: theory, algorithms, practicalities: Elsevier, 2005.
[174]M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision vol. 2: PWS publishing Pacific Grove, CA, 1999.
[175]J. Canny, “A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8 , no. 6, pp. 679-698, 1986.
[176]M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models, International journal of computer vision, vol. 1, pp. 321-331, 1988.
[177]D. J. Williams and M. Shah, “A fast algorithm for active contours and curvature estimation, CVGIP: Image understanding, vol. 55, pp. 14-26, 1992.
[178]L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipulators: McGraw-Hill Companies, 1996.
[179]E. Malis, F. Chaumette, and S. Boudet, “2-1/2-D visual servoing, IEEE Transactions on Robotics and Automation, vol. 15, pp. 238-250, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top