跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林穎俊
研究生(外文):Ying-ChunLin
論文名稱:應用於非侵入式眼壓量測系統的讀取器射頻前端電路設計
論文名稱(外文):Design of RF Front-end Circuits for Non-invasive IOP Measurement Readers
指導教授:黃尊禧
指導教授(外文):Tzuen-Hsi Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:低雜訊放大器混頻器射頻接收器眼壓量測系統
外文關鍵詞:LNAMixerReceiverIOP system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對應用於非侵入式眼壓監控系統(IOP)之讀取接收機射頻前端電路進行研究與製作,晶片為使用國家晶片中心(CIC)提供的TSMC 0.18-µm 1P6M RF CMOS標準製程進行製作,並將晶片黏附於電路板上(Chip on board)進行量測。
論文中主要內容分為四個部分:
第一部分探討青光眼的疾病機制與現有治療青光眼方法,並介紹青光眼與眼壓之間的關聯性。依照眼壓與青光眼的關聯性,提出輕便、可攜帶式,簡易使用的眼壓監控系統概念。基於此概念說明系統的基本架構雛型與運作原理,以及相對所需使用的各種功能方塊電路。
第二部分為設計2.4GHz CMOS 低雜訊放大器(LNA)的設計。首先介紹LNA電路基本架構理論並詳細說明在相對特性上的考量,與各元件尺寸設計、電晶體尺寸選擇之步驟,由於在無線眼壓系統架構中由感測器傳遞過來的射頻訊號在傳遞路徑上的損耗將使得感測訊號相對地微弱,所以必需要有一個低雜訊、高增益的放大器。低雜訊放大器的操作規格如下:供應電壓為1.8V,整體消耗功率小於6mW,整體功率增益相會大於10dB,雜訊指數(NF)為小於3.5dB,線性度(IIP3)預計會大於-12dBm,射頻輸入端之反射損耗(S11)與輸出短端之反射損耗(S22)皆小於-10dB,而整體面積考量將預計小於1.1 1.0 mm2。
第三部分為設計2.4GHz CMOS 單端平衡混頻器(Single-balanced Mixer)的設計,首先說明混頻器的運作原理並說明在系統規劃下中頻電路處理訊號必須是方波訊號一遍饋入頻率電壓轉換器。欲將中頻輸出類比訊號推至方波訊號,會消耗過多功率消耗,所以以三級串接式CMOS緩衝器實現之。此混頻器採用Current bleeding的技巧同時改善增益與線性度,並與論文中無使用Current bleeding的架構規格做比較。混頻器的操作規格如下:供應電壓為1.8V,總功耗小於25mW,轉換增益(CG)將大於15dB、單側邊頻帶(SSB)雜訊指數為小於13dB、線性度(IIP3)為1dBm,LO to RF、LO to IF隔離度皆為小於-30dB。
第四部份為整合模擬及整合電路之部分量測結果。
第五部分為對此整合電路設計做結論,並對所遇到的問題以及未來規劃做一闡述。
This thesis targets for the study of the receiver front-end circuit for the non-invasive intraocular pressure (IOP) monitoring system and the implementation of the related chip integration. The chip fabrication is implemented by TSMC 0.18-um 1P6M RF CMOS standard process provided by the chip implementation center (CIC). The measurement is conducted by the chip-on-board method.

This thesis mainly contains four parts. The first part discussed the glaucoma disease mechanisms and the treatment of it. The correlation between glaucoma and intraocular pressure is introduced. According to this correlation, a portable and easy-to-use IOP monitoring system idea is proposed. The basic structure prototype and its operation theorem are illustrated. The related necessary function blocks for the IOP monitoring system is also pointed out.

The second part of this thesis describes a design of a 2.4GHz low-noise amplifier (LNA). At first, we present the basic principles and architectures of LNAs. Then, we describe the design steps of LNA in the size choice of transistors. Because of the path loss of the RF signal from the sensor in the IOP monitoring system, the received signal at the reader end becomes so weak. Therefore, a low-noise and high-gain amplifier is necessary. The desired operation specifications of the LNA are listed below. The operation voltage is 1.8V with power consumption smaller than 6 mW. The power gain is greater than 10 dB and the noise figure (NF) is less than 3.5 dB. The third-order input intersection point (IIP3) is greater than -12 dBm. The input return loss(S11) and output return loss(S22) are less than -10dB. The chip area consumption is no more than 1.1 x 1.0 mm2.

The third part shows the design of a 2.4GHz single-balanced mixer. At first, the operation principle of the mixers is illustrated. In the proposed system, the IF signals for the frequency-to-voltage converter use must be a square wave. Since a greater power consumption is necessary to drive the analog IF signal into a square wave, a three-stage CMOS buffer in cascade is constructed. The current bleeding technique is adopted for the improvements of gain and linearity. In the thesis, we have also compared the performances between the mixers with and without using the current bleeding technique. The desired operation specifications of the mixer are listed below. The operation voltage is 1.8V with power consumption smaller than 25 mW. The conversion gain (CG) is greater than 18 dB and the single-sided band (SSB) noise figure (NF) is less than 13 dB. The IIP3 is +1 dBm. Both the LO-to-RF and LO-to-IF isolations are better than -30 dB.

The fourth part describes the integration simulation and measurement results. Meanwhile.

The fifth part we have made conclusions on our circuit integration results as well as the remained problems and future works.

第一章:緒論
1-1研究背景 1
1-2研究動機 3
1-3長時間眼壓監控系統架構說明 4
1-4論文架構概述 7
第二章:2.4GHz CMOS低雜訊放大器設計
2-1低雜訊放大器在IOP主要功能說明 9
2-2低雜訊放大器重要參數理論與說明 13
2-3 CMOS低雜訊放大器設計流程 27
2-3-1 電路架構考量 28
2-3-2 共源極架構雜訊之模型 31
2-3-3 CMOS電晶體尺寸選擇 33
2-3-4 輸入、輸出匹配網路設計 37
2-3-5 完整電路設計與模擬流程 49
2-4低雜訊放大器(LNA)繪製PCB說明 54
2-4-1 PCB繪製注意事項 54
2-4-2量測環境與步驟 61
2-5模擬結果 61
第三章:2.4GHz CMOS 電流注入式單端平衡混頻器設計
3-1混頻器(Mixer)在IOP系統之主要功能說明 67
3-2混頻器重要參數理論與原理說明 70
3-2-1 混頻器原理與重要參數 70
3-2-2 混頻器架構應用介紹 79
3-3 CMOS單端平衡混頻器設計流程 91
3-3-1 電路架構考量與選擇 91
3-3-2 電晶體尺寸選擇 92
3-3-3 輸出、輸入匹配網路設計 98
3-3-4 緩衝放大器級設計 100
3-3-5 完整電路設計與模擬流程 102
3-4電流注入單端平衡混頻器量測環境 105
3-5模擬結果 110
第四章:整合模擬與量測
4-1 LNA與Mixer 整合模擬 119
4-2整體讀取端整合模擬(包含LNA、Mixer、PLL、Frequency toVoltage converter) 125
第五章:結論
5-1結論 135
5-2未來展望 136
參考文獻 137
[1]Kaweh Mansouri and Robert N. Weinreb “Continuous 24 hour intraocular pressure monitoring for glaucoma with a contact lens sensor – time for a paradigm change The European Gournal of Medical Sciences , 28 March 2012.
[2]Sensimed 's “A breakthrough solution to continuously monitor fluctuations of intraocular pressure [Online]. Available : http://www.sensimed.ch/
[3]呂學士,微波通訊半導體電路,全華科技圖書股份有限公司,民國九十年。
[4]B. Johnson, “Thermal agitation of electricity in conductors, Phys. Rev., vol. 32, pp.97-109, Jul. 1928.
[5]H. Nyquist, “Thermal agitation of electric charge in conductors, Phys. Rev., vol. 32, pp.110-113, Jul. 1928.
[6]A. van der Ziel, “Thermal Noise in Field Effent Transistors, Proc. IEEE, August 1962, pp. 1801-12.
[7]J.-S. Goo et al. “Impace of Substrate Resistance on Drain Current Noise in MOSFETs, Simulation of Semiconductor Processes and Devices (SISOAD), 2001, pp.182-5.
[8]Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 1998.
[9]B. Razavi, Design of Analog CMOS Integrated Circuit, Mc Graw Hill, 1996.
[10]B. Razavi, RF Microelectronics, Prentice-Hall International Editions, 1998.
[11]Heng Zhang, Xiaohua Fan, Sinencio, E.S.,“A Low-Power, Linearized, Ultra-Wideband LNA Design Technique, IEEE J.Solid-State Circuits, vol. 44, pp.320-330, Feb. 2009.
[12]M. Khurram. and S.M.R. Hasan, “A 3-5 GHz Current-Reuse gm-Boosted CG LNA for Ultrawideband in 130 nm CMOS, IEEE Trans. VLSI., vol.20, pp. 400-409, March 2012.
[13]Liu Jinhua, Chen Guican, Zhang Hong, “A 3-5GHz gm-boosted common-gate CMOS UWB LNA with a common-source auxiliary circuit, Microwave and Millimeter Wave Technology, 2008. ICMMT., vol. 3, pp.1342-1345, April 2008.
[14]郭信智,應用於60-GHz CMOS 毫米波射頻接收機前端電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
[15]D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier, IEEE J. Solid-State Circuit, vol. 32, no. 5, pp. 745-759, May 1997.
[16]Richard Chi-Hsi Li, RF Circuit Design, Wiley, 2009.
[17]B.W. Cook, A. Berny, A. Molnar, S. Lanzisera and K.S.J. Pister, “Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply, IEEE J.Solid-State Circuits, vol. 41, pp. 2757-2766, Dec. 2006.
[18]Taeksang Song, Hyoung-Seok Oh, E. Yoon, S. Hong, “A Low-Power 2.4-GHz Current-Reused Receiver Front-End and Frequency Source for Wireless Sensor Network, IEEE J.Solid-State Circuits, vol. 42, pp. 1012-1022, May 2007.
[19]A. Liscidini, M. Tedeschi, R. Castello,“A 2.4 GHz 3.6mW 0.35mm2 Quadrature Front-End RX for ZigBee and WPAN Applications, ISSC Dig. Tech. Papers, Feb 2008, pp.370-620.
[20]F. Beffa, R. Vogt, W. Bachtold, E. Zellweger and U. Lott, “A 6.5-mW receiver front-end for Bluetooth in 0.18-μm CMOS, Microwave Symposium Digest, 2002 IEEE MTT-S International, vol. 1, 2002, pp.501-504.
[21]朱元凱,應用於802.11a WLAN之5 GHz U-NII頻帶降頻器 CMOS RFIC,國立成功大學電腦與通信工程研究所碩士論文,民國九十一年。
[22]張忠平,超寬頻無線通訊射頻收發機CMOS射頻晶片之設計研究,國立成功大學電腦與通信工程研究所碩士論文,民國九十四年。
[23]蔡宗倫,應用於V-band 毫米波前端電路之CMOS壓控振盪器與混頻器設計,國立成功大學電機工程學系碩士論文,民國一百年。
[24]M.A. Abdelghany, R.K. Pokharel, H. Kanaya and K. Yoshida, “Low-voltage low-power combined LNA-single gate mixer for 5GHz wireless systems, IEEE RFIC, June 2011, pp.1-4.
[25]C. Tsironis, R. Meierer, and R. Stahlmann, “Dual-gate MESFET mixers,IEEE Trans. Microw. Theory and Tech., vol. MTT-32, no3, pp. 248-255, Mar. 1984.
[26]Hanil Lee and Mohammadi, S., “A 500μW 2.4GHz CMOS Subthreshold Mixer for Ultra Low Power Applications, IEEE RFIC, June 2007, pp.325-328.
[27]K. Munusamy and Z. Yusoff, “A Highly Linear CMOS Down Conversion Double Balanced Mixer, ICSE Semiconductor Electronics, pp. 985-990, Dec 2006.
[28]P. J. Sulivan, B. A. Xavier and W.H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer, IEEE J.Solid-State Circuits, vol. 32, pp.1151-1155, July 1997.
[29]S. G. Lee and J. K. Choi, “Current-reuse bleeding mixer, Electronics Letters, vol. 36, pp. 696-697, April 2000.
[30]Brian C Wadell, “Transmission Line Design Handbook, Artech House. page 79, 1991.
[31]Miller, H Craig, “Inductance Formula for a Single-Layer Circular Coil, in Proceedings of the IEEE, vol. 75, no 2, February 1987, pp.256-257.
[32]J. A. M. Javinen, J. Kaukovuori, J. Ryynanen, J. Jussila, K. Kivekas, M. Honkanen and K. A. I. Halonen, “2.4-GHz receiver for sensor applications, IEEE J.Solid-State Circuits, vol. 40, no. 7, pp. 1426-1433, Jul. 2005.
[33]K. Vavelidis, I. Vassiliou, T. Georgantas, A. Yamanaka, S. Kavadias, G. Kamoulakos, C. Kapnistis, Y. Kokolakis, A. Kyranas, P. Merakos, I. Bouras, S. Bouras, S. Plevridis, N. Haralabidis, “A single-chip, 5.15GHz-5.35GHz, 2.4GHz-2.5GHz, 0.18μm CMOS RF transceiver for 802.11a/b/g wireless LAN, Solid-State Circuits Conference, ESSCIRC '03, in proceedings of the 29th European, Sept. 2003, pp.221–224.
[34]R. Ahola, A. Aktas, J. Wilson, K.R. Rao, F. Jonsson, I. Hyyrylainen, A. Brolin, T. Hakala, A. Friman, T. Makiniemi, J. Hanze, M. Sanden, D. Wallner, Y. Guo, T. Lagerstam, L. Noguer, T. Knuuttila, P. Olofsson, M. Ismail, “A single chip CMOS transceiver for 802.11 a/b/g WLANs, in IEEE International Solid-State Circuits Conference (ISSCC), Dig. Tech. Papers, Feb. 2004, pp.92 - 515.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊